Background: The obstacle of limb motor caused by stroke, especially the decline of motor function of upper limbs, can directly affect the activities of daily living of stroke patients with hemiplegia. Based on long-term clinical practice, the treatment effect of electrical stimulation methods for stroke limb dysfunction has been widely recognized and supported by authoritative guidelines and systematic reviews. However, which electrical stimulation method is the optimum in the treatment of stroke limb dysfunction is still a controversial issue.

Objective: In this paper, we adopted Network Meta-Analysis (NMA) to rank the priorities of various electrical stimulation methods, so as to select the optimal electrical stimulation method and discuss its rationality in guiding clinical practice.

Methods: We carried out a systematic review by searching a total of 6806 studies from 8 databases and 2 clinical trial registries, and finally screened out 34 studies for further investigation. Then, pairwise meta-analysis and Bayesian network meta-analysis were employed to evaluate the effectiveness and ranking of various interventions. The primary outcome measure was Fugl-Meyer Assessment Upper Extremity (FMA-UE), and the secondary outcome measures were Modified Barthel Index (MBI) and Modified Ashworth Scale (MAS). Finally, the risk of bias, publication bias and sensitivity of the Randomized Controlled Trials (RCTs) were evaluated.

Results: On the basis of comprehensive rehabilitation treatment (RT), the Functional Electrical Stimulation (FES) was superior than other electrical stimulation methods in improving both FMA-UE and MBI. Meanwhile, the results indicated that the Transcutaneous Electrical Acupoint Stimulation (TEAS) was the only electrical stimulation method that showed treatment advantages in reducing MAS.

Conclusion: The study showed that FES had the optimal overall rehabilitation effect on upper limb dysfunction of stroke patients based on the comprehensive RT, while the treatment effect of TEAS on upper limb spasticity after stroke was the most significant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450164PMC
http://dx.doi.org/10.2147/NDT.S332967DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
32
limb dysfunction
16
upper limb
12
network meta-analysis
12
stimulation methods
12
stimulation method
12
electrical
9
stimulation
9
dysfunction stroke
8
systematic review
8

Similar Publications

Can a Cochlear Implant Be Used as an Electrical Impedance Tomography Device?

Int J Numer Method Biomed Eng

January 2025

Bioengineering, Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Gauteng, South Africa.

The imaging of the live cochlea is a challenging task. Regardless of the quality of images obtained from modern clinical imaging techniques, the internal structures of the cochlea mainly remain obscured. Electrical impedance tomography (EIT) is a safe, low-cost alternative medical imaging technique with applications in various clinical scenarios.

View Article and Find Full Text PDF

Retrospective Cohort Study on the Incidence and Management of Hemiplegic Shoulder Pain in Stroke Inpatients.

Cureus

December 2024

Physical Medicine and Rehabilitation, Centro de Reabilitação do Norte, Vila Nova de Gaia, PRT.

Background: Painful hemiplegic shoulder (PHS) is a prevalent and challenging complication following a stroke and can significantly impair a patient's engagement in rehabilitation, leading to poorer functional outcomes and extended hospital stays. This retrospective cohort study aims to investigate the incidence, etiology, and management of PHS in stroke inpatients, focusing on the effectiveness of various therapeutic interventions.

Methods: We conducted a retrospective analysis of subacute stroke inpatients who developed PHS during rehabilitation at a single center.

View Article and Find Full Text PDF

Next generation bioelectronic medicine: making the case for non-invasive closed-loop autonomic neuromodulation.

Bioelectron Med

January 2025

SecondWave Systems Incorporated, Head Quarters, Minneapolis-Saint Paul, MN, 55104, USA.

The field of bioelectronic medicine has advanced rapidly from rudimentary electrical therapies to cutting-edge closed-loop systems that integrate real-time physiological monitoring with adaptive neuromodulation. Early innovations, such as cardiac pacemakers and deep brain stimulation, paved the way for these sophisticated technologies. This review traces the historical and technological progression of bioelectronic medicine, culminating in the emerging potential of closed-loop devices for multiple disorders of the brain and body.

View Article and Find Full Text PDF

Efficacy and safety of non-invasive low-frequency tibial nerve stimulator in overactive bladder.

Eur J Med Res

January 2025

Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing, 100730, China.

Objectives: To evaluate the efficacy and safety of a non-invasive low-frequency tibial nerve stimulator (TNS-01) vs sham control in relieving the symptoms of overactive bladder (OAB) patients.

Patients: Participants who were diagnosed with primary OAB or exhibited at least one OAB symptom. All participants underwent three 30-min intervention sessions weekly.

View Article and Find Full Text PDF

Electro-tactile modulation of muscle activation and intermuscular coordination in the human upper extremity.

Sci Rep

January 2025

Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA.

Electro-tactile stimulation (ETS) can be a promising aid in augmenting sensation for those with sensory deficits. Although applications of ETS have been explored, the impact of ETS on the underlying strategies of neuromuscular coordination remains largely unexplored. We investigated how ETS, alone or in the presence of mechano-tactile environment change, modulated the electromyogram (EMG) of individual muscles during force control and how the stimulation modulated the attributes of intermuscular coordination, assessed by muscle synergy analysis, in human upper extremities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!