A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of SAB model for predicting mortality in intensive care unit after aortic aneurysm surgery. | LitMetric

Background: Aortic aneurysm (AA) patients after vascular surgery are at high risk of death, some of them need intensive care. Our aim was to develop a simplified model with baseline data within 24 hours of intensive care unit (ICU) admission to early predict mortality.

Methods: Univariate analysis and least absolute shrinkage and selection operator were used to select important variables, which were then taken into logistic regression to fit the model. Discrimination and validation were used to evaluate the performance of the model. Bootstrap method was conducted to perform internal validation. Finally, decision clinical analysis curve was used to test the clinical usefulness of the model.

Results: We obtained baseline data of 482 AA patients from Medical Information Mart for Intensive Care III database, 33 (6.8%) of whom died in ICU. Our final model contained three variables and was called SAB model based on initials of three items [Sepsis, Anion gap, Bicarbonate (SAB)]. Area under the curve of SAB was 0.904 (95% CI: 0.841-0.967) while brier score was 0.043 (95% CI: 0.028-0.057). After internal validation, corrected area under the curve was 0.898 and brier score was 0.045, which showed good prediction ability of SAB model. The model can be assessed on https://vascularmodel.shinyapps.io/AorticAneurysm/.

Conclusions: SAB model derived in this study can be easily used to predict in-ICU mortality of AA patients after surgery precisely.

Download full-text PDF

Source
http://dx.doi.org/10.21037/apm-21-1660DOI Listing

Publication Analysis

Top Keywords

sab model
16
intensive care
16
model
9
care unit
8
aortic aneurysm
8
baseline data
8
internal validation
8
area curve
8
brier score
8
development sab
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!