Relative energetics of CHCHO, CHCHOH, and CHCHOH radical products from ethanol dehydrogenation.

J Chem Phys

Department of Chemistry and Biochemistry, University of Mississippi, P.O. Box 1848, University, Mississippi 38677, USA.

Published: September 2021

This study has examined the relative energetics of nine stationary points associated with the three different radical isomers generated by removing a H atom from ethanol at the O atom (ethoxy, CHCHO), the α C atom (CHCHOH), and the β C atom (CHCHOH). For the first time, CCSD(T) geometry optimizations and harmonic vibrational frequency computations with the cc-pVTZ and aug-cc-pVTZ basis sets have been carried out to characterize two unique minima for each isomer along with three transition state structures with C symmetry. Explicitly correlated CCSD(T) computations were also performed to estimate the relative energetics of these nine stationary points near the complete basis set limit. These benchmark results were used to assess the performance of various density functional theory (DFT) and wave function theory methods, and they will help guide method selection for future studies of alcohols and their radicals. The structures generated by abstracting H from the α C atom have significantly lower electronic energies (by at least 7 kcal mol) than the CHCHO and CHCHOH radicals. Although previously reported as a minimum on the ground-state surface, the A″ C structure of the ethoxy radical was found to be a transition state in this study with MP2, CCSD(T), and a number of DFT methods. An implicit solvation model used in conjunction with DFT and MP2 methods did not qualitatively change the relative energies of the isomers, but the results suggest that the local minima for the CHCHOH and CHCHOH radicals could become more energetically competitive in condensed phase environments, such as liquid water and ethanol.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0062809DOI Listing

Publication Analysis

Top Keywords

relative energetics
12
chcho chchoh
8
chchoh chchoh
8
energetics stationary
8
stationary points
8
atom chchoh
8
transition state
8
chchoh radicals
8
chchoh
7
atom
5

Similar Publications

Because hummingbirds are small and have an expensive mode of locomotion, they have constrained energy budgets. Torpor is used to buffer against these energetic challenges, but its frequency and duration vary. We measured lipid content, metabolic rates and torpor use in two species of migrating hummingbirds, calliope () and rufous hummingbirds () at a stopover site.

View Article and Find Full Text PDF

This study investigates the impact of structural isomerism on the excited state lifetime and redox energetics of heteroleptic [Ir(ppy)2(bpy)]+ and homoleptic Ir(ppy)3 photoredox catalysts using ground-state and time-dependent density functional theory methods. While the ground- and excited-state reduction potentials differ only slightly among the isomers of these complexes, our findings reveal significant variations in the radiative and non-radiative decay rates of the reactivity-controlling triplet 3MLCT states of these closely related species. The observed differences in radiative decay rates could be traced back to variations in the transition dipole moment, vertical energy gaps, and spin-orbit coupling of the isomers.

View Article and Find Full Text PDF

Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps.

BMC Biol

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.

View Article and Find Full Text PDF

The metabolic cost of walking for individuals with transtibial amputation is generally greater compared with able-bodied individuals. One aim of powered prostheses is to reduce metabolic deficits by replicating biological ankle function. Individuals with transtibial amputation can activate their residual limb muscles to volitionally control bionic ankle prostheses for walking; however, it is unknown how myoelectric control performs outside the laboratory.

View Article and Find Full Text PDF

Data-Driven Improvement of Local Hybrid Functionals: Neural-Network-Based Local Mixing Functions and Power-Series Correlation Functionals.

J Chem Theory Comput

January 2025

Technische Universitát Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin D-10623, Germany.

Local hybrid functionals (LHs) use a real-space position-dependent admixture of exact exchange (EXX), governed by a local mixing function (LMF). The systematic construction of LMFs has been hampered over the years by a lack of exact physical constraints on their valence behavior. Here, we exploit a data-driven approach and train a new type of "n-LMF" as a relatively shallow neural network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!