Summary: A 33-year-old gentleman of Egyptian heritage presented with a 21 years history of unexplained and recurrent hypercalcaemia, nephrolithiasis, nephrocalcinosis, and myocarditis. A similar history was also found in two first-degree relatives. Further investigation into the vitamin D metabolism pathway identified the biochemical hallmarks of infantile hypercalcaemia type 1 (IIH). A homozygous, likely pathogenic, variant in CYP24A1 was found on molecular genetic analysis confirming the diagnosis. Management now focuses on removing excess vitamin D from the metabolic pathway as well as reducing calcium intake to achieve serum-adjusted calcium to the middle of the reference range. If undiagnosed, IIH can cause serious renal complications and metabolic bone disease.
Learning Points: Infantile hypercalcaemia type 1 (IIH) is an autosomal recessive disorder characterised by homozygous mutations in the CYP24A1 gene that encodes the 24-hydroxylase enzyme used to convert active vitamin D metabolites such as 1,25-(OH)2-vitamin D into their inactive form. IIH should be questioned in individuals presenting with a history of unexplained hypercalcaemia, especially if presenting from childhood and/or where there is an accompanying family history of the same in first and/or second degree relatives, causing complications such as nephrocalcinosis, pericarditis, and calcium-based nephrolithiasis. Associated biochemistry of IIH is persistent mild to moderate hypercalcaemia, normal or raised 25-(OH)-vitamin D and elevated 1,25-(OH)2-vitamin D. An elevated ratio of 25-(OH)-vitamin D to 24,25-(OH)2-vitamin D can be a useful marker of defects in the 24-hydroxylase enzyme, whose measurement can be facilitated through the supra-regional assay service. Management should focus on limiting the amount of vitamin D introduced into the body either via sunlight exposure or supplementation in addition to calcium dietary restriction to try and maintain appropriate calcium homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495722 | PMC |
http://dx.doi.org/10.1530/EDM-21-0058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!