Stem cells immortalized by hTERT perform differently from those immortalized by SV40LT in proliferation, differentiation, and reconstruction of matrix microenvironment.

Acta Biomater

Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA. Electronic address:

Published: December 2021

Although matrix microenvironment has the potential to improve expanded stem cell proliferation and differentiation capacity, decellularized extracellular matrix (dECM) deposited by senescent cells does not contribute to the rejuvenation of adult stem cells, which has become a barrier to personalized stem cell therapy. Genetic modification is an effective strategy to protect cells from senescence but it carries the increased risk of malignant transformation and genetic instability. In this study, lentivirus carrying either human telomerase reverse transcriptase (hTERT) or simian virus 40 large T antigen (SV40LT) was used to transduce human infrapatellar fat pad-derived stem cells (IPFSCs). We found that virus transduction modified the proliferative, chondrogenic, and adipogenic abilities of IPFSCs. Interestingly, dECM deposited by immortalized cells significantly influenced replicative senescent IPFSCs in proliferation and differentiation preference, the effect of which is hinged on the approach of immortalization using either SV40LT or hTERT. Our findings indicate both dECM expansion and immortalization strategies can be used for replicative senescent adult stem cells' proliferation and lineage-specific differentiation, which benefits future stem cell-based tissue regeneration. This approach may also work for adult stem cells with premature senescence in elderly/aged patients, which needs further investigation. STATEMENT OF SIGNIFICANCE: Adult stem cells are a promising solution for autologous cell-based therapy. Unfortunately, cell senescence due to donor age and/or ex vivo expansion prevents clinical application. Recent progress with decellularized extracellular matrix provides a potential for the rejuvenation of senescent stem cells by improving their proliferation and differentiation capacities. Given the fact that the young matrix can provide a healthy and energetic microenvironment, in this study, two approaches using lentivirus transduction of hTERT and SV40LT were compared. The goal was to immortalize donor cells for deposition of decellularized extracellular matrix. The matrix was demonstrated to contribute diverging effects on the chondrogenic and adipogenic differentiation of expanded stem cells and exhibited proliferation benefits as well. These findings provide an invaluable asset for stem cell-based tissue regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627502PMC
http://dx.doi.org/10.1016/j.actbio.2021.09.021DOI Listing

Publication Analysis

Top Keywords

stem cells
28
proliferation differentiation
16
adult stem
16
stem
12
decellularized extracellular
12
extracellular matrix
12
cells
10
matrix microenvironment
8
expanded stem
8
stem cell
8

Similar Publications

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

Background: Transgender and gender diverse (TGD) people seek gender-affirming care at any age to manage gender identities or expressions that differ from their birth gender. Gender-affirming hormone treatment (GAHT) and gender-affirming surgery may alter reproductive function and/or anatomy, limiting future reproductive options to varying degrees, if individuals desire to either give birth or become a biological parent.

Objective And Rationale: TGD people increasingly pursue help for their reproductive questions, including fertility, fertility preservation, active desire for children, and future options.

View Article and Find Full Text PDF

Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!