Plasmons, which are collective and coherent oscillations of charge carriers driven by an external field, play an important role in applications such as solar energy harvesting, sensing, and catalysis. Conventionally, plasmons are found in bulk and nanomaterials and can be described with classical electrodynamics. In recent years, plasmons have also been identified in molecules, and these molecules have been utilized to build plasmonic devices. As molecular plasmons can no longer be described by classical electrodynamics, a description using quantum mechanics is necessary. In this Letter, we develop a quantum metric to accurately and efficiently identify and quantify plasmons in molecules. A number, which we call the plasmon character index (PCI), can be calculated for each electronic excited state and describes the plasmonicity of the excitation. PCI is developed from the collective and coherent excitation picture in orbitals and shows excellent agreement with the predictions from scaled time-dependent density functional theory but is vastly more computationally efficient. Therefore, PCI can be a useful tool in identifying and quantifying plasmons and will inform the rational design of plasmonic molecules and nanoclusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c02645 | DOI Listing |
Molecules
December 2024
Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.
View Article and Find Full Text PDFNanophotonics
September 2024
Friedrich Schiller University Jena, Faculty of Physics and Astronomy, Abbe Center of Photonics, Institute of Applied Physics, Albert-Einstein-Str. 15, 07745 Jena, Germany.
In the rapidly evolving field of plasmonic metasurfaces, achieving homogeneous, reliable, and reproducible fabrication of sub-5 nm dielectric nanogaps is a significant challenge. This article presents an advanced fabrication technology that addresses this issue, capable of realizing uniform and reliable vertical nanogap metasurfaces on a whole wafer of 100 mm diameter. By leveraging fast patterning techniques, such as variable-shaped and character projection electron beam lithography (EBL), along with atomic layer deposition (ALD) for defining a few nanometer gaps with sub-nanometer precision, we have developed a flexible nanofabrication technology to achieve gaps as narrow as 2 nm in plasmonic nanoantennas.
View Article and Find Full Text PDFNanophotonics
July 2024
Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany.
Light-matter interactions between plasmonic and excitonic modes have attracted considerable interest in recent years. A major challenge in achieving strong coupling is the identification of suitable metallic nanostructures that combine tight field confinement with sufficiently low losses. Here, we report on a room-temperature study on the interaction of tungsten disulfide (WS) monolayer excitons with a hybrid plasmon polariton (HPP) mode supported by nanogroove grating structures milled into single-crystalline silver flakes.
View Article and Find Full Text PDFNanophotonics
May 2024
Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
Nanostructured plasmonic surfaces allow for precise tailoring of electromagnetic modes within sub-diffraction mode volumes, boosting light-matter interactions. This study explores vibrational strong coupling (VSC) between molecular ensembles and subradiant "dark" cavities that support infrared quadrupolar plasmonic resonances (QPLs). The QPL mode exhibits a dispersion characteristic of bound states in the continuum (BIC).
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal.
The production of cost-effective novel materials for PV solar cells with long-term stability, high energy conversion efficiency, enhanced photon absorption, and easy electron transport has stimulated great interest in the research community over the last decades. In the presented work, Cu/CuS-MWCNTs nanocomposites were produced and analyzed in the framework of potential applications for PV solar cells. Firstly, the surface of the produced one-dimensional Cu was covered by CuS nanoflake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!