This article proposes a robust end-to-end deep learning-induced fault recognition scheme by stacking multiple sparse-denoising autoencoders with a Softmax classifier, called stacked spare-denoising autoencoder (SSDAE)-Softmax, for the fault identification of complex industrial processes (CIPs). Specifically, sparse denoising autoencoder (SDAE) is established by integrating a sparse AE (SAE) with a denoising AE (DAE) for the low-dimensional but intrinsic feature representation of the CIP monitoring data (CIPMD) with possible noise contamination. SSDAE-Softmax is established by stacking multiple SDAEs with a layerwise pretraining procedure, and a Softmax classifier with a global fine-tuning strategy. Furthermore, SSDAE-Softmax hyperparameters are optimized by a relatively new global optimization algorithm, referred to as the state transition algorithm (STA). Benefiting from the deep learning-based feature representation scheme with the STA-based hyperparameter optimization, the underlying intrinsic characteristics of CIPMD can be learned automatically and adaptively for accurate fault identification. A numeric simulation system, the benchmark Tennessee Eastman process (TEP), and a real industrial process, that is, the continuous casting process (CCP) from a top steel plant of China, are used to validate the performance of the proposed method. Experimental results show that the proposed SSDAE-Softmax model can effectively identify various process faults, and has stronger robustness and adaptability against the noise interference in CIPMD for the process monitoring of CIPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2021.3109618 | DOI Listing |
Sci Rep
January 2025
School of Mines, China University of Mining and Technology, Xuzhou, China.
In coal mining operations, the stable operation of hydraulic supports is crucial for ensuring mine safety. However, the nonlinear, non-stationary characteristics and noise interference in hydraulic support pressure data pose significant challenges for anomaly detection and fault diagnosis. This study proposes an anomaly detection and failure identification method based on Gated Recurrent Unit Autoencoder (GRU-AE), aimed at achieving anomaly detection in hydraulic support pressure data and equipment failure early warning.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany János Street, 400028, Cluj-Napoca, Romania.
One of the leading challenges in Water Resource Recovery Facility monitoring and control is the poor data quality and sensor consistency due to the tough and complex circumstances of the process operation. This paper presents a new principal component analysis fault detection approach for the nitrate and nitrite concentration sensor based on Water Resource Recovery Facility measurements, together with the Fisher Discriminant Analysis identification of fault types. Five malfunction cases were considered: constant additive error, ramp changing error in time, incorrect amplification error, random additive error, and unchanging sensor value error.
View Article and Find Full Text PDFSci Rep
December 2024
Business Segment Networks, Stadtwerke Flensburg GmbH, 24939, Flensburg, Germany.
In response to climate change mitigation efforts, improving the efficiency of heat networks is becoming increasingly important. An efficient operation of energy systems depends on faultless performance. Following the need for effective fault detection and elimination methods, this study suggests a three-step workflow for increasing automation in managing defective substations on the user level within heat networks.
View Article and Find Full Text PDFSci Rep
December 2024
Merchant Marine College, Shanghai Maritime University, Shanghai, 201306, China.
The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.
View Article and Find Full Text PDFSci Rep
December 2024
College of Mechanical Engineering, Beihua University, Jilin City, Jilin, 132021, China.
To address the limitations of weak information extraction of rolling bearing fault features and the poor generalization performance of diagnostic methods, a novel method was proposed based on sparrow search algorithm (SSA)-Variational Mode Decomposition (VMD) and refined composite multi-scale dispersion entropy (RCMDE). Firstly, SSA optimized the key parameters of VMD to decompose the fault signal. The time-frequency domain comprehensive evaluation factor algorithm was then employed to select the sensitive intrinsic mode function (IMF) components for reconstruction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!