Modern immunologic research increasingly requires high-dimensional analyses to understand the complex milieu of cell types that comprise the tissue microenvironments of disease. To achieve this, we developed Infinity Flow combining hundreds of overlapping flow cytometry panels using machine learning to enable the simultaneous analysis of the coexpression patterns of hundreds of surface-expressed proteins across millions of individual cells. In this study, we demonstrate that this approach allows the comprehensive analysis of the cellular constituency of the steady-state murine lung and the identification of previously unknown cellular heterogeneity in the lungs of melanoma metastasis–bearing mice. We show that by using supervised machine learning, Infinity Flow enhances the accuracy and depth of clustering or dimensionality reduction algorithms. Infinity Flow is a highly scalable, low-cost, and accessible solution to single-cell proteomics in complex tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457665PMC
http://dx.doi.org/10.1126/sciadv.abg0505DOI Listing

Publication Analysis

Top Keywords

machine learning
12
infinity flow
12
flow cytometry
8
flow
5
high-throughput single-cell
4
single-cell quantification
4
quantification hundreds
4
hundreds proteins
4
proteins conventional
4
conventional flow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!