AI Article Synopsis

  • The study investigates the chemical and spectroscopic properties of various copper-based photosensitizers, using advanced computational methods to understand how charge and structural flexibility affect their photophysical behavior.
  • Techniques like ultrafast transient absorption and FTIR spectroscopy demonstrate how charge influences the triplet state characteristics, including a flattening distortion observed in one variant (CuLH).
  • Time-resolved luminescence and photodissociation spectroscopy reveal long-lived triplet states with lifetimes in the tens of microseconds, crucial for potential applications in photocatalysis and luminescent technologies.

Article Abstract

Chemical and spectroscopic characterization of the mononuclear photosensitizers [(DPEPhos)Cu(I)(MPyrT)] (CuL, CuLH) and their dinuclear analogues (Cu L', Cu L'H ), backed by (TD)DFT and high-level GW-Bethe-Salpeter equation calculations, exemplifies the complex influence of charge, nuclearity and structural flexibility on UV-induced photophysical pathways. Ultrafast transient absorption and step-scan FTIR spectroscopy reveal flattening distortion in the triplet state of CuLH as controlled by charge, which also appears to have a large impact on the symmetry of the long-lived triplet states in Cu L' and Cu L'H . Time-resolved luminescence spectroscopy (solid state), supported by transient photodissociation spectroscopy (gas phase), confirm a lifetime of some tens of μs for the respective triplet states, as well as the energetics of thermally activated delayed luminescence, both being essential parameters for application of these materials based on earth-abundant copper in photocatalysis and luminescent devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597052PMC
http://dx.doi.org/10.1002/chem.202102760DOI Listing

Publication Analysis

Top Keywords

triplet states
8
time-resolved spectroscopy
4
spectroscopy electronic
4
electronic structure
4
structure mono-and
4
mono-and dinuclear
4
dinuclear pyridyl-triazole/dpephos-based
4
pyridyl-triazole/dpephos-based cui
4
cui complexes
4
complexes chemical
4

Similar Publications

Luminescent Iridium-Terpyridine Complexes with Various Bis-Cyclometalated Ligands.

Molecules

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue 690-8504, Shimane, Japan.

A series of luminescent bis-cyclometalated iridium complexes with 2,2':6',2″-terpyridine (tpy), [Ir()(tpy)]PF ( = 2-phenylpyridinate (ppy) for ; benzo[h]quinolinate (bzq) for ; 1-phenylisoquinolinate (piq) for ; and 2-phenylbenzothiazolate (pbt) for ), have been synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that the tpy ligands of - are coordinated to the iridium center in a bidentate fashion, and the uncoordinated pendant pyridine rings in the tpy ligands of - form intramolecular π-π stacking interactions with a phenyl moiety of ligands. In addition, the pendant pyridine ring in the tpy ligand of forms an intramolecular hydrogen bonding interaction, unlike in -.

View Article and Find Full Text PDF

We conducted a phase I trial to determine the optimal dose of triplet therapy with the tyrosine kinase inhibitor sitravatinib plus nivolumab plus ipilimumab in 22 previously untreated patients with advanced clear cell renal cell carcinoma. The primary endpoint was safety. Secondary endpoints were objective response rate (ORR), disease control rate (DCR), duration of response (DOR), progression-free survival (PFS), overall survival (OS), 1-year survival probability, and sitravatinib pharmacokinetics.

View Article and Find Full Text PDF

Visible-light absorbing metal-free organic dyes are of increasing demand for various optoelectronic applications because of their great structure-function tunability through chemical means. Several dyes also show huge potential in triplet photosensitization, generating reactive singlet oxygen. Understanding the structure-property relationships of many well-known fluorescein dyes is of paramount importance in designing next-generation energy efficient dyes, which is currently limited.

View Article and Find Full Text PDF

Dynamics of hydrogen shift reactions between peroxy radicals.

Phys Chem Chem Phys

January 2025

The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Peroxy radicals are key intermediates in many atmospheric processes. Reactions between such radicals are of particular interest as they can lead to accretion products capable of participating in new particle formation (NPF). These reactions proceed through a tetroxide intermediate, which then decomposes to a complex of two alkoxy radicals and O, with spin conservation dictating that the complex must be formed in the triplet state.

View Article and Find Full Text PDF

Carbene-metal-amide (CMA) complexes have diverse applications in luminescence, imaging and sensing. In this study, we designed and synthesized a series of CMA complexes, which were subsequently doped into a PMMA host. These materials demonstrate light-induced dynamic phosphorescence, attributed to their long intrinsic triplet state lifetime (τP,int, in the μs-ms scale), high intersystem crossing (ISC) rate constant (kISC, up to 107 s-1), and bright phosphorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!