Despite its development almost 40 years ago, receptor autoradiography remains a regular and reliable practice for the localization of oxytocin and vasopressin receptors in brain tissue sections. It is used across many laboratories, institutions, and animal species to characterize and quantify the distribution and density of these receptors at baseline and/or in response to experimental manipulations or lived experience. This powerful tool and the neuroanatomical receptor maps that it generates have allowed researchers to more accurately investigate and understand the neural substrates upon which oxytocin and vasopressin act to affect behavior. Researchers have used these maps to design site-specific pharmacological manipulations and electrophysiological recordings in animal studies to directly probe the underlying neural mechanisms in this system. This methods chapter describes the specific procedures by which a pharmacologically optimized, competitive binding modification to receptor autoradiography can be used to reliably localize oxytocin and vasopressin receptors in the human brain and in the brains of nonhuman primates. The ability to reliably perform receptor autoradiography for these targets in human brain tissue can finally inform our interpretation of past intranasal oxytocin neuroimaging studies and allows us to move past the reliance on transcriptomic studies using brain tissue homogenates so that we can directly investigate the involvement of oxytocin and vasopressin receptors in human behavior, physiology, and neuropsychiatric disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1759-5_7 | DOI Listing |
Horm Mol Biol Clin Investig
January 2025
Department of Biochemistry, Faculty of Medicine, 37555 Urmia University of Medical Sciences, Urmia, Iran.
Biochem Biophys Res Commun
January 2025
Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan. Electronic address:
Pain is a major non-motor symptom of Parkinson's disease (PD). The relationship between hyperalgesia and neuropeptides originating from paraventricular nucleus (PVN) in 6-hydroxydopamine (6-OHDA) rats has already been investigated for oxytocin (OXT), but not yet for arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH). The present study aimed to investigate the alterations in these neuropeptides following nociceptive stimulation in PD model rats and to examine the mechanisms of hyperalgesia.
View Article and Find Full Text PDFEndocrine
December 2024
Department of Neurosurgery, Hôpitaux Universitaires de Genève (HUG), Geneva, Switzerland.
Purpose: Transient arginine vasopressin deficiency (AVP-D), previously called diabetes insipidus, is a well-known complication of transsphenoidal pituitary surgery (TPS) with no definite predictive biomarker to date making it difficult to anticipate. While oxytocin (OXT) was previously suggested as a possible biomarker to predict syndrome of inappropriate diuresis (SIAD)-related hyponatraemia after TPS, its secretion in patients presenting with AVP-D remains poorly understood. We therefore hypothesized that OXT might present a different secretion in the case of AVP-D which would support its potential as an early biomarker of AVP-D.
View Article and Find Full Text PDFJ Headache Pain
December 2024
Department of Clinical Sciences, Faculty of Medicine, Lund University, Getingevagen 4, Lund, 22185, Sweden.
Background: The purpose of this study was to examine whether there are sex differences in vasomotor responses and receptor localization of hormones and neuropeptides with relevance to migraine (vasopressin, oxytocin, estrogen, progesterone, testosterone, amylin, adrenomedullin and calcitonin gene-related peptide (CGRP)) in human intracranial arteries.
Methods: Human cortical cerebral and middle meningeal arteries were used in this study. The tissues were removed in conjunction with neurosurgery and donated with consent.
bioRxiv
November 2024
Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
The transcription factor MYT1L supports proper neuronal differentiation and maturation during brain development. MYT1L haploinsufficiency results in a neurodevelopmental disorder characterized by intellectual disability, developmental delay, autism, behavioral disruptions, aggression, obesity and epilepsy. While MYT1L is expressed throughout the brain, how it supports proper neuronal function in distinct regions has not been assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!