HIV-1 transactivator of transcription (Tat) protein is required for HIV-1 replication, and it has been implicated in the pathogenesis of HIV-1-associated neurocognitive disorder (HAND). HIV-1 Tat can enter cells via receptor-mediated endocytosis where it can reside in endolysosomes; upon its escape from these acidic organelles, HIV-1 Tat can enter the cytosol and nucleus where it activates the HIV-1 LTR promoter. Although it is known that HIV-1 replication is affected by the iron status of people living with HIV-1 (PLWH), very little is known about how iron affects HIV-1 Tat activation of the HIV-1 LTR promoter. Because HIV-1 proteins de-acidify endolysosomes and endolysosome de-acidification affects subcellular levels and actions of iron, we tested the hypothesis that the endolysosome pool of iron is sufficient to affect Tat-induced HIV-1 LTR transactivation. Ferric (Fe) and ferrous (Fe) iron both restricted Tat-mediated HIV-1 LTR transactivation. Chelation of endolysosome iron with deferoxamine (DFO) and 2-2 bipyridyl, but not chelation of cytosolic iron with deferiprone and deferasirox, significantly enhanced Tat-mediated HIV-1 LTR transactivation. In the presence of iron, HIV-1 Tat increasingly oligomerized and DFO prevented the oligomerization. DFO also reduced protein expression levels of the HIV-1 restriction agent beta-catenin in the cytosol and nucleus. These findings suggest that DFO increases HIV-1 LTR transactivation by increasing levels of the more active dimeric form of Tat relative to the less active oligomerized form of Tat, increasing the escape of dimeric Tat from endolysosomes, and/or reducing beta-catenin protein expression levels. Thus, intracellular iron might play a significant role in regulating HIV-1 replication, and these findings raise cautionary notes for chelation therapies in PLWH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602775 | PMC |
http://dx.doi.org/10.1007/s13365-021-01016-5 | DOI Listing |
Virology
December 2024
Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA. Electronic address:
Significant advances in treatment have turned HIV-1 into a manageable chronic condition. This has been achieved due to highly active antiretroviral therapy (HAART), involving a combination regimen of medications, including drugs that target Reverse Transcriptase, Protease, Integrase, and viral entry, explored in this review. This paper also highlights novel therapies, such as Lenacapavir, and avenues toward functional cure targeting the CCR5 co-receptor, including the Δ32 mutation.
View Article and Find Full Text PDFJ Virol
December 2024
Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
HIV-1 can integrate viral DNA into host cell chromosomes and establish a long-term stable latent viral reservoir, a major obstacle in curing HIV-1 infection. The reactivation of latent proviruses with latency-reversing agents (LRAs) is a prerequisite for the eradication of viral reservoirs. Previous reports have shown that tannic acid (TA) exerts several biological functions, including antioxidant and antitumor activities.
View Article and Find Full Text PDFCells
November 2024
Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
Drug abuse continues to pose a significant challenge in HIV control efforts. In our investigation, we discovered that cocaine not only upregulates the expression of the DNA-dependent protein kinase (DNA-PK) but also augments DNA-PK activation by enhancing its phosphorylation at S2056. Moreover, DNA-PK phosphorylation triggers the higher localization of the DNA-PK into the nucleus.
View Article and Find Full Text PDFJ Biol Chem
December 2024
National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:
Serine incorporator 5 (SER5) can be incorporated into HIV-1 virions to block viral entry by disrupting the envelope glycoprotein-mediated viral fusion to the plasma membrane. Recent studies suggest that SER5 also inhibits HIV-1 mRNA transcription and the subsequent progeny virion biogenesis. However, the underlying mechanisms through which SER5 antagonizes the viral transcription remain poorly understood.
View Article and Find Full Text PDFiScience
December 2024
Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
HIV-1 latency is regulated by chromatin modifying enzymes, and histone deacetylase inhibitors (HDACi) cause reactivation of provirus expression. Surprisingly, we observed that inhibitors of the CBP/p300 acetyltransferases also cause reversal of latency in T cells. CBP/p300 inhibitors synergize with various latency reversing agents to cause HIV-1 reactivation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!