The aim of the present study was to evaluate whether the addition of red propolis extract (RPE), in different roughage: concentrate (R:C) ratios, influences the intake, digestibility, ruminal parameters, and serum biochemistry of sheep. We used eight Santa Inês sheep with an average body weight of 29.45 ± 1.58 kg, housed in metabolism cages for 60 days, and distributed in two simultaneous Latin square designs in a 2 × 2 factorial scheme. The factors consisted of two R:C ratios (70:30 and 30:70) with or without the addition of 15 mL/day of RPE. No interactions were found (P > 0.05) between R:C ratios and with or without RPE. Sheep fed 30:70 ratio showed higher (P < 0.05) intake and dry matter (DM) digestibility and non-fibrous carbohydrates and lower (P < 0.05) intake and neutral detergent fiber (NDF) digestibility. The addition of RPE did not influence (P > 0.05) the intake or nutrients digestibility, but the sheep that received RPE had a higher (P < 0.05) ruminal pH and longer (P < 0.05) time of rumination (min/kg DM) compared to the group without propolis. The ruminal ammonia concentration was higher for sheep fed 70:30 ratio, but the concentrations of total protein and albumin did not differ between R:C ratios. The addition of 15 mL of RPE does not influence the intake, digestibility, ingestive behavior, and rumen ammonical nitrogen of sheep. There is no association between the R:C ratio and the addition of 15 mL/day of RPE for sheep.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11250-021-02907-9DOI Listing

Publication Analysis

Top Keywords

roughage concentrate
8
red propolis
8
propolis extract
8
concentrate ratio
4
ratio affect
4
affect action
4
action red
4
sheep
4
extract sheep
4
sheep metabolism?
4

Similar Publications

In the present study, einkorn wheat flour ( L.) was incorporated into a special dried bread (peksimet) formulation produced from sourdough breads at different concentrations (0-10-20-30-40 and 50 g 100 g) and some physicochemical and nutritional (total dietary fiber, resistant starch, glycemic index, acrylamide content) characteristics and sensory properties of the samples were investigated. The total dietary fiber content of the bread samples ranged from 3.

View Article and Find Full Text PDF

Background/objectives: Food-insecure individuals are at risk for poor health outcomes, including substandard sleep health. A possible association of food insecurity with sleep regularity has not been explored, and factors contributing to the relationship between food insecurity and sleep are not well understood. This cross-sectional study explored the relationship between food insecurity and sleep regularity and identified specific nutrients that mediated the association.

View Article and Find Full Text PDF

Iodine is a key micronutrient essential for the synthesis of thyroid hormone, which regulates metabolic processes and maintains overall health. Despite its importance, iodine deficiency is a global health issue, leading to disorders such as goiter, hypothyroidism, and developmental abnormalities. Biofortification of crops with iodine is a promising strategy to enhance the dietary iodine intake, providing an alternative to iodized salt.

View Article and Find Full Text PDF

(SA), a plant rich in dietary fiber, has demonstrated considerable potential for enhancing gut health and antioxidant capacity in animals. This study investigates the integration of SA as a novel dietary ingredient for Zhedong white geese, with a specific focus on evaluating its effects on growth performance, nutrient digestibility, antioxidant capacity, intestinal health, and cecal microbiota composition. A total of 360 1-day-old Zhedong white geese with an average weight of 114.

View Article and Find Full Text PDF

Background: This research aimed to investigate differences in rumen fermentation characteristics between Karakul sheep and Hu sheep reared under identical conditions. The test subjects included newborn Hu and Karakul sheep, which were monitored across three stages: stage I (Weaning period: 15 ~ 30 days), stage II (Supplementary feeding period: 31 ~ 90 days), and stage III (Complete feeding period: 91 ~ 150 days). During the supplementary feeding period, cottonseed hulls were the main roughage source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!