AI Article Synopsis

  • Researchers are focusing on developing techniques for creating enantiospecific molecular superlattices, which have significant scientific and technological implications.
  • By adjusting weak non-covalent interactions between hexaphenylbenzene enantiomers, they can control the chirality of molecular self-assemblies.
  • High-resolution scanning tunneling microscopy and density functional theory demonstrate how adding fluorine atoms influences these interactions, leading to distinct chiral patterns in the molecular structures.

Article Abstract

Controllable fabrication of enantiospecific molecular superlattices is a matter of imminent scientific and technological interest. Herein, we demonstrate that long-range superlattice chirality in molecular self-assemblies can be tailored by tuning the interplay of weak intermolecular non-covalent interactions between hexaphenylbenzene-based enantiomers. By means of high-resolution scanning tunneling microscopy measurements, we demonstrate that the functionalization of a hexaphenylbenzene-based molecule with fluorine (F) atoms leads to the formation of molecular self-assemblies with distinct long-range chiral recognition patterns. We employed density functional theory calculations to quantify F-mediated lone pair F⋯π, C-H⋯F, and F⋯F interactions attributed to the distinct enantiospecific molecular self-organizations. Our findings underpin a viable route to fabricate long-range chiral recognition patterns in supramolecular assemblies by engineering the weak non-covalent intermolecular interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp02996gDOI Listing

Publication Analysis

Top Keywords

molecular self-assemblies
12
long-range superlattice
8
superlattice chirality
8
chirality molecular
8
enantiospecific molecular
8
long-range chiral
8
chiral recognition
8
recognition patterns
8
molecular
5
tailoring long-range
4

Similar Publications

This study investigates the effects of homopolymer additives and kinetic traps on the self-assembly of poly(ethylene glycol)-b-poly(lactide) (PEG-PLA) block copolymer (BCP) nanostructures in aqueous environments. By using non-adsorbing PEG homopolymers to kinetically trap PEG-PLA nanostructures, we demonstrate that varying the concentration and molecular weight of the added PEG induces a reversible micelle-to-vesicle transition. This transition is primarily driven by changes in the molecular geometry of the PEG-PLA BCPs due to excluded volume screening effects.

View Article and Find Full Text PDF

The assembly of biological systems forms nonequilibrium patterns with different functionalities through molecular-level communication via stepwise sequential interaction and activation. The mimicking of this molecular signaling offers extensive opportunities to design self-assemblies of bioinspired synthetic nonequilibrium systems to develop molecular robots with active, adaptive, and autonomous behavior. Herein, the design and construction of biomolecular motor system, microtubule (MT)-kinesin based molecular swarm system, are reported through stepwise sequential interactions of DNA.

View Article and Find Full Text PDF

Engineering the Self-Assembly Pathways of POSS-Peptide Amphiphiles to Form Diverse Cross-β Structures.

Angew Chem Int Ed Engl

December 2024

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.

Cross-β structures are crucial in driving protein folding and aggregation. However, due to their strong aggregating tendency, the precise control of the self-assembly of β-sheet-forming peptides remains a challenge. We propose a molecular geometry strategy to study and control the self-assembly of cross-β structures.

View Article and Find Full Text PDF

Controlling the Hierarchical Assembly of DNA-Based Hexagonal Microstructures.

Small

December 2024

Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.

This paper discusses the controlled morphology of hierarchical liquid crystalline DNA assemblies. Through a process of heating and slow cooling, double-stranded DNAs (dsDNAs) having 23 complementary bases and two base overhangs (a pair of 25mer oligonucleotides) spontaneously assemble into micro-sized hexagonal platelets in a solution containing poly(ethylene glycol) (PEG) and salt. Remarkably, the addition of a shorter dsDNA with AA/TT overhangs (a pair of 18mer oligonucleotides) to a PEG-salt solution of 25mer DNA with AA/TT overhangs results in the formation of molecular tubes, each with a central blockage.

View Article and Find Full Text PDF

MR Imaging Reveals Dynamic Aggregation of Multivalent Glycoconjugates in Aqueous Solution.

Inorg Chem

December 2024

Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States.

Glycoconjugates forming from the conjugation of carbohydrates to other biomolecules, such as proteins, lipids, or other carbohydrates, are essential components of mammalian cells and are involved in numerous biological processes. Due to the capability of sugars to form multiple hydrogen bonds, many synthetic glycoconjugates are desirable biocompatible platforms for imaging, diagnostics, drugs, and supramolecular self-assemblies. Herein, we present a multimeric galactose functionalized paramagnetic gadolinium (Gd(III)) chelate that displays spontaneous dynamic aggregation in aqueous conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!