A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gut dysbiosis correction contributes to the hepatoprotective effects of Celak extract against alcohol through the gut-liver axis. | LitMetric

Alcoholic liver disease (ALD) is a major health issue globally due to the consumption of alcoholic beverages. Celak is a food additive and an edible herb that is widely used in Asia and possesses hepatoprotective activity, but the underlying mechanisms behind this protective activity are not completely understood. The purpose of this study was to investigate the hepatoprotective effects of Celak extract (TQE) against ALD as well as the underlying mechanism based on gut microbiota and the gut-liver axis. TQE supplementation markedly alleviated chronic alcohol-induced liver injury in C57 mice. TQE also ameliorated gut barrier dysfunction induced by alcohol. Consequently, the activation of the lipopolysaccharide (LPS) translocation-mediated TLR4 pathway and the subsequent inflammatory response and ROS overproduction in the liver were suppressed. Meanwhile, alcohol-induced gut microbiota dysbiosis was also corrected by TQE. To further investigate the contribution of gut dysbiosis correction to the beneficial effects of TQE on ALD, a fecal microbiota transplantation study was conducted. TQE-manipulated gut microbiota transplantation markedly counteracted the alcohol-induced gut dysbiosis in the recipient mice. In parallel with gut dysbiosis correction, liver damage was partly ameliorated in the recipient mice. Gut barrier dysfunction, endotoxemia, TLR4 pathway induction as well as downstream inflammatory response and ROS overproduction were also partly suppressed due to gut dysbiosis correction in alcohol-fed recipient mice. In summary, these results suggest that gut dysbiosis correction contributes to the hepatoprotective effects of TQE against alcohol through the gut-liver axis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1fo01117kDOI Listing

Publication Analysis

Top Keywords

gut dysbiosis
24
dysbiosis correction
20
hepatoprotective effects
12
gut-liver axis
12
gut microbiota
12
recipient mice
12
gut
11
correction contributes
8
contributes hepatoprotective
8
effects celak
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!