Developing cost-effective, highly-active and robust electrocatalysts is of vital importance to supersede noble-metal ones for both hydrogen evolution reactions (HERs) and oxygen reduction reactions (ORRs). Herein, a unique vanadium-mediated space confined strategy is reported to construct a composite structure involving Co/CoS nanoparticles anchored on Co-N-doped porous carbon (VCS@NC) as bifunctional electrocatalysts toward HER and ORR. Benefitting from the ultrafine nanostructure, abundant Co-N active sites, large specific surface area and defect-rich carbon framework, the resultant VCS@NC exhibits unexceptionable HER catalytic activity, needing extremely low HER overpotentials in pH-universal media (alkaline: 117 mV, acid: 178 mV, neutral: 210 mV) at a current density of 10 mA cm, paralleling at least 100 h catalytic durability. Notably, the VCS@NC catalyst delivers high-efficiency ORR performance in alkaline solution, accompanied with a quite high half wave potential of 0.901 V, far overmatching the commercial Pt/C catalyst. Our research opens up novel insight into engineering highly-efficient multifunctional non-precious metal electrocatalysts by a metal-mediated space-confined strategy in energy storage and conversion system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1nr04607a | DOI Listing |
J Colloid Interface Sci
April 2023
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China. Electronic address:
High-efficiency oxygen reduction reaction (ORR) electrocatalyst in microbial fuel cells (MFCs) is important to boost the power production efficiency and reduce overall cost. Herein, we demonstrate a novel nitrogen (N)-doped carbon nanofiber (N-CNF) supported metal and metal compound heterostructure derived from metal-organic frameworks (MOFs), which endows superior electrocatalytic activity by optimizing the coupling modulation effect. The resulting cobalt/cobalt phosphide and cobalt/cobalt sulfide nanoparticles embedded in N-doped carbon nanofiber (Co/CoP/CoP@N-CNF, Co/CoS@N-CNF) present superior ORR activity and methanol tolerance.
View Article and Find Full Text PDFChem Sci
April 2022
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
The conversion of biomass-derived platform molecules (, 5-hydroxymethyl furfural (HMF)) represents a sustainable route to produce value-added chemicals. Here we report the fabrication of an N-doped carbon nanotube assembled yolk-shell polyhedron with embedded Co-CoS nanoparticles (NPs) (Y-Co-CoS @CN) for efficient HMF electrooxidation. DFT calculations demonstrate that the formation of the heterojunction could intensify spin polarization in Co-CoS, thus achieving effective d-p coupling between the catalyst and reactant/intermediate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!