The ingestion of combinatory Alcohol Mixed with Energy Drink (AMED) beverages continues to increase markedly, particularly among young adults. Some studies suggest detrimental health effects related to the combination of alcohol with energy drink formulations; however, the consumption of AMED has not been investigated in context of the cerebral microvasculature or neuroinflammation. We hypothesized that cerebral capillary integrity and glial cells are particularly vulnerable to the combination of AMED.12-week old wild-type C57BL/6J mice were orally gavaged with either vehicle (water), alcohol (vodka), an energy drink (Mother), or a combination AMED, daily for five days. Thereafter, mice were sacrificed, blood alcohol concentrations were analysed and cryosections of brain specimens were subjected to confocal immunofluorescent analysis for measures of cerebral capillary integrity via immunoglobulin G (IgG), and markers of neuroinflammation, ionized-calcium-binding-adaptor-molecule 1 (Iba1) and Glial-Fibrillary-Acidic-Protein (GFAP). Proinflammatory cytokines, IL-2, IL-17A, IFN-ϒ, and anti-inflammatory cytokines, IL-4, IL-6 and IL-10, were also measured in serum. Consistent with previous studies, cerebral capillary dysfunction and astroglial cell activation were markedly greater in the alcohol-only group (AO); however, the AO-induced effects were profoundly attenuated with the AMED combination. Mice maintained on AO and AMED interventions exhibited a moderate increase in microglial recruitment. There were no significant changes in pro-inflammatory nor anti-inflammatory cytokines in ED or AMED treated mice. This study suggests that paradoxically the acute detrimental effects of alcohol on cerebral capillary integrity and astrogliosis are counteracted with the co-provision of an ED, rich in caffeine and taurine and containing B-group vitamins.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1028415X.2021.1975364DOI Listing

Publication Analysis

Top Keywords

cerebral capillary
20
energy drink
16
capillary integrity
12
alcohol vodka
8
mixed energy
8
drink amed
8
anti-inflammatory cytokines
8
amed
7
alcohol
6
cerebral
6

Similar Publications

Drug delivery for epilepsy treatment faces enormous challenges, where the sole focus on enhancing the ability of drugs to penetrate the blood-brain barrier (BBB) through ligand modification is insufficient because of the absence of seizure-specific drug accumulation. In this study, an amphipathic drug carrier with a glucose transporter (GLUT)-targeting capability was synthesised by conjugating 2-deoxy-2-amino-D-glucose (2-DG) to the model carrier DSPE-PEG. A 2-DG-modified nano drug delivery system (NDDS) possessing robust stability and favourable biocompatibility was then fabricated using the nanoprecipitation method.

View Article and Find Full Text PDF

Background: RING finger protein 213 () p.R4810K is an established risk factor for moyamoya disease and intracranial artery stenosis in East Asian people. Recent evidence suggests its potential association with extracranial cardiovascular diseases, including pulmonary hypertension.

View Article and Find Full Text PDF

Cerebrovascular endothelial cell (EC) subtypes characterized by blood-brain barrier (BBB) properties or fenestrated pores are essential components of brain-blood interfaces, supporting brain function and homeostasis. To date, the origins and developmental mechanisms underlying this heterogeneous EC network remain largely unclear. Using single-cell-resolution lineage tracing in zebrafish, we discover a multipotent vascular niche at embryonic capillary borders that generates ECs with BBB or fenestrated molecular identity.

View Article and Find Full Text PDF

Modeling of Blood Flow Dynamics in Rat Somatosensory Cortex.

Biomedicines

December 2024

Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland.

The cerebral microvasculature forms a dense network of interconnected blood vessels where flow is modulated partly by astrocytes. Increased neuronal activity stimulates astrocytes to release vasoactive substances at the endfeet, altering the diameters of connected vessels. Our study simulated the coupling between blood flow variations and vessel diameter changes driven by astrocytic activity in the rat somatosensory cortex.

View Article and Find Full Text PDF

Microdifferential Pressure Measurement Device for Cellular Microenvironments.

Bioengineering (Basel)

December 2024

Fusion Oriented Research for Disruptive Science and Technology, Japan Science and Technology Agency, 5-3, Yonbancho, Chiyoda-ku, Tokyo 102-8666, Japan.

Mechanical forces influence cellular proliferation, differentiation, tissue morphogenesis, and functional expression within the body. To comprehend the impact of these forces on living organisms, their quantification is essential. This study introduces a novel microdifferential pressure measurement device tailored for cellular-scale pressure assessments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!