Unraveling the Bonding Nature Along the Photochemically Activated Paterno-Büchi Reaction Mechanism.

Chemphyschem

Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Avenida, República 275, 8370146, Santiago de Chile, Chile.

Published: November 2021

The photochemically activated Paterno-Büchi reaction mechanism following the singlet excited-state reaction path was analyzed based on a bonding evolution framework. The electronic rearrangements, which describe the mechanism of oxetane formation via carbon-oxygen attack (C-O), comprises of the electronic activation of formaldehyde and accumulation of pairing density on the O once the reaction system is approaching the conical intersection point. Our theoretical evidence based on the ELF topology shows that the C-O bond is formed in the ground-state surface (via C-O attack) returning from the S surface accompanied by 1,4-singlet diradical formation. Subsequently, the reaction center is fully activated near the transition state (TS), and the ring-closure (yielding oxetane) involves the C-C bond formation after the TS. For the carbon-carbon attack (C-C), both reactants (formaldehyde and ethylene) are activated, leading to C-C bond formation in the S excited state before reaching the conical intersection region. Finally, the C-O formation occurs in the ground-state surface, resulting from the pair density flowing primarily from the C to O atom.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202100594DOI Listing

Publication Analysis

Top Keywords

photochemically activated
8
activated paterno-büchi
8
paterno-büchi reaction
8
reaction mechanism
8
conical intersection
8
ground-state surface
8
c-c bond
8
bond formation
8
reaction
5
formation
5

Similar Publications

Carbon dioxide, global boiling, and climate carnage, from generation to assimilation, photocatalytic conversion to renewable fuels, and mechanism.

Sci Total Environ

January 2025

Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea. Electronic address:

The increasing CO concentration in the atmosphere has substantial impacts on the global temperature. For energy sustainability and minimization of the effects of global warming, an approach to understand CO capturing and a carbon neutral culture is extremely essential in the present circumstances. The CO emission from vehicles and industries can be minimized using energy cost-effective techniques and can be converted more selectively into reusable fuels via thermochemical, electrochemical, photochemical, photocatalytic, electrocatalytic, biological and inorganic carbonate-based approaches.

View Article and Find Full Text PDF

A dual action electrochemical molecular imprinting sensor based on FeCu-MOF and RGO/PDA@MXene hybrid synergies for trace detection of ribavirin.

Food Chem

January 2025

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China. Electronic address:

In this study, we designed a molecularly imprinted electrochemical sensor based on the reduced graphene oxide/polydopamine@Mxene (RPM) and FeCu-MOF for the detection of antiviral drug ribavirin (RBV). The RPM composite enhances the active surface area and electron transport capacity of the sensor, and the incorporation of FeCu-MOF can not only further improve the catalytic performance of the material, but also enables the sensor to harness the electrical reduction signal of HO. Furthermore, we developed an optimized molecularly imprinted polymer via density functional theory (DFT) to enhance the sensor's specificity and sensitivity for RBV detection.

View Article and Find Full Text PDF

The rapid upsurge of metal-organic frameworks (MOFs) has sparked profound interest in their potential as proton conductors for proton exchange membrane fuel cells. However, proton-conducting behaviors of hydrophobic MOFs remain poorly understood compared with their hydrophilic counterparts, largely due to the absence of a microscopic phase separation structure akin to that found in Nafion membranes. Herein, we demonstrate a strategy for regulating the structures and proton conductivities of MOFs by separately incorporating hydrophobic -C(CF)- group alongside hydrophilic -O- and -SO- groups into organic ligands as linkers.

View Article and Find Full Text PDF

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.

View Article and Find Full Text PDF

Effect of different root canal irrigation regimes microbubble emulsion (MBE) via riboflavin photosensitizer (RFP), cerium oxide (CeO) nanoparticles (NPs), and Nd: YAP laser on antibacterial efficiency, microhardness (MH), smear layer (SL) removal efficacy, and push-out bond strength (PBS) of AH plus sealer to canal dentin. Sixty single-rooted teeth were selected, disinfected, and categorized into four groups based on the type of disinfection. Following disinfection, a pair of samples were randomly selected and visualized under scanning electron microscope (SEM) for SL evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!