Synthesis and characterization of tracers and development of a fluorescence polarization immunoassay for amantadine with high sensitivity in chicken.

J Food Sci

College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing, People's Republic of China.

Published: October 2021

AI Article Synopsis

Article Abstract

Fluorescence polarization immunoassay (FPIA) is a homogeneous and rapid analytical method that is suitable for high-throughput screening of large numbers of samples. However, FPIA typically suffers from lower sensitivity than the well-established enzyme-linked immunosorbent assay (ELISA), limiting its wide application as an analytical tool that can be run with trace levels of an analyte. Herein, a highly sensitive FPIA for detecting amantadine (AMD) in chicken is described. To achieve high sensitivity, nine chemical tracers of AMD that employ different fluoresceins, fluorescein derivatives, and haptens were synthesized and paired with four previously produced monoclonal antibodies (mAbs). The effect of the tracer structure on the sensitivity of FPIA was investigated and discussed. We found that the tracers with a linear and shorter bridge between adamantane and fluorescein generally provided higher sensitivity. After optimization, N'-(1-adamantyl) ethylenediamine (AEDA), an AMD structural analogue labeled with fluorescein isothiocyanate (FITC), achieved the lowest IC value (1.0 ng/ml) in the FPIA, which was comparable to that of the heterologous ELISA format that used the same mAb7G2. We also investigated the possible recognition mechanism of mAbs in terms of conformational and electronic aspects. The developed FPIA was applied to chicken to detect AMD residue, demonstrating a limit of detection (LOD) of 0.9 µg/kg with recoveries of 76.5-89.3% and coefficients of variation (CVs) below 14.5%. These results show that the proposed FPIA is an efficient, accurate, and convenient method for the rapid screening of AMD residues in chicken. PRACTICAL APPLICATION: The fluorescence polarization immunoassay (FPIA) was developed to determine and quantify amantadine (AMD) in chicken samples with high sensitivity. This homogeneous method avoids coating and washing steps and may provide high-throughput AMD screening in chicken in 10 min with high accuracy and precision. FPIA can be used as a monitoring tool and contribute significantly to the rapid detection of AMD in chicken.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.15896DOI Listing

Publication Analysis

Top Keywords

fluorescence polarization
12
polarization immunoassay
12
high sensitivity
12
amd chicken
12
fpia
9
immunoassay fpia
8
amd
8
amantadine amd
8
chicken
7
sensitivity
6

Similar Publications

A variety of potential biological roles of mechanical forces have been proposed in the field of cell biology. In particular, mechanical forces alter the mechanical conditions within cells and their environment, exerting a strong effect on the reorganization of the actin cytoskeleton. Single-molecule imaging studies have provided evidence that an actin filament may act as a mechanosensor.

View Article and Find Full Text PDF

Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.

View Article and Find Full Text PDF

Flow Cytometry Analysis of Perturbations in the Bacterial Cell Envelope Enabled by Monitoring Generalized Polarization of the Solvatochromic Peptide UNR-1.

Anal Chem

January 2025

Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, Strasbourg F-67000, France.

The worldwide spread of antibiotic resistance is considered to be one of the major health threats to society. While developing new antibiotics is crucial, there is also a strong need for next-generation analytical methods for studying the physiological state of live bacteria in heterogeneous populations and their response to environmental stress. Here we report a single-cell high-throughput method to monitor changes in the bacterial cell envelope in response to stress based on ratiometric flow cytometry.

View Article and Find Full Text PDF

Fluorescence Anisotropy for Monitoring cis- and trans-Membrane Interactions of Synaptotagmin-1.

Methods Mol Biol

January 2025

Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.

Vesicle fusion induces neurotransmitter release, orchestrated by synaptotagmin-1 (Syt-1) as a Ca sensor. However, the precise molecular mechanisms of Syt-1 remain controversial, with various and competing models proposed based on different ionic strengths. Syt-1, residing on the vesicle membrane alongside anionic phospholipids such as phosphatidylserine (PS), undergoes Ca-induced binding to its own vesicle membrane, known as the cis-interaction, which prevents the trans-interaction of Syt-1 with the plasma membrane.

View Article and Find Full Text PDF

Background: Methyltransferase-like 3 (METTL3) regulates numerous biological processes and diverse cancers.

Objective: To explore the frequency distribution of METTL3 rs1061026, rs1139130, and rs1263801 polymorphisms, and their potential impacts on clinical outcomes and chemotherapy-induced toxicities in a cohort of Chinese pediatric patients diagnosed with primary brain tumors (PBTs).

Methods: Genotyping for three investigated SNPs was performed in 107 pediatric patients with PBTs using the Sequenom MassARRAY iPLEX platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!