Articular cartilage degeneration and bone adaptation due to lack of dystrophin in mice.

J Bone Miner Metab

Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136 Lab 328, CEP: 11015-020, Santos, SP, 11060-001, Brazil.

Published: January 2022

Introduction: Duchenne muscular dystrophy is caused by the absence of dystrophin. This study aimed to investigate femoral morphological characteristics of lack of dystrophin in MDX mice, considering that this model, different from DMD patient, is not influenced by corticosteroids administration and limited ambulation.

Materials And Methods: Proximal femur of male 16-week-old Control and MDX mice were submitted to histological, morphometric (volume density of articular cartilage, compact bone, trabecular bone and bone marrow; articular cartilage layers area; articular cartilage cell area), and immunohistochemistry analysis for RUNX-2, RANK-L, MMP-2, MMP-9, Caspase-3 and KI-67.

Results: MDX showed loss of linearity of articular cartilage with subchondral bone transition and elevation of this subchondral bone to the articular surface when compared with control. In addition, MDX presented morphological difference in the pantographic network of collagen fibers. Volume density of trabecular bone tissue was higher in the MDX than Control, but volume density of articular cartilage was lower in MDX (p < 0.05). The articular cartilage layers and chondrocytes area were significantly smaller in MDX than Control. These results associated to MMPs and osteogenic markers of proximal femur revealed an adaptation process as a consequence of lack of dystrophin.

Conclusions: The morphological changes observed in the bone tissue of the MDX may be not only secondary to muscle weakness or chronic use of corticosteroids but also our results indicate connections between decrease of cartilage thickness, collagen network alteration and consequent subchondral changes that may lead to articular cartilage degeneration and bone adaptation mechanism in MDX mice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00774-021-01270-xDOI Listing

Publication Analysis

Top Keywords

articular cartilage
24
volume density
12
lack dystrophin
8
mdx mice
8
density articular
8
trabecular bone
8
subchondral bone
8
articular
7
bone
7
mdx
6

Similar Publications

Plasma expression of a microRNA panel is differentially associated with 1H-NMR lipoprotein profile in rheumatoid arthritis patients.

Clin Investig Arterioscler

January 2025

Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain. Electronic address:

Introduction: Rheumatoid arthritis (RA) is an autoimmune and inflammatory disorder that leads to cartilage and bone deterioration. This inflammatory activity causes extra-articular manifestations, including the acceleration of the atherosclerotic process. However, the exact causes of this accelerated process are under investigation.

View Article and Find Full Text PDF

Background: Traditional freehand techniques in high tibial osteotomy (HTO) have been shown to lack precision and accuracy. Patient-specific instrumentation (PSI) and fixation created from cross-sectional imaging have recently been introduced to address this problem.

Purpose/hypothesis: The purpose of the study was to compare traditional freehand techniques versus PSI in a human cadaveric model of HTO.

View Article and Find Full Text PDF

Background: Accurate donor-recipient matching of the femoral condyle radius of curvature (ROC) in osteochondral allograft (OCA) transplantation may aid in minimizing articular surface incongruities. Matching linear femorotibial dimensions, such as the femoral condyle anterior-posterior length (APL), femoral condyle width (lateral-medial length, LML), femoral hemicondyle width (HCW), and tibial plateau width (TPW), can provide similar results if they correlate well with ROC. This study investigates the relationship between femorotibial dimensions and ROC at the cartilage surface using magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Objective: The objective of this study was to assess the maturation of matrix-associated autologous chondrocyte transplantation (MACT) grafts up to 2 years after the surgery using gray-level co-occurrence matrix (GLCM) texture analysis of quantitative T maps, compare the results with the microfracturing technique (MFX) control group, and relate these results to the morphological MOCART 2.0 score.

Design: A subcohort of 37 patients from prospective, multi-center study underwent examination on a 3T MR scanner, including a T mapping sequence at 3, 12, and 24 months after surgery.

View Article and Find Full Text PDF

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!