Herein, we report a new metal-organic framework (MOF)-based composite beads adsorbent made via incorporating UiO-66 MOF, carboxylated graphene oxide (GOCOOH) into sodium alginate for efficient removal of methylene blue dye, and Cu ions. The successful fabrication of the synthesized UiO-66/GOCOOH@SA composite beads was confirmed by means of X-ray diffraction, Fourier transform infrared, scanning electron microscopy, zeta potential, X-ray photoelectron spectroscopy analysis, and thermogravimetric analysis and BET measurement. The incorporation of both UiO-66 and GOCOOH into SA beads greatly increased their adsorption efficiency for the removal of both MB and Cu with maximum adsorption capacities of 490.72 and 343.49 mg/g, respectively. The removal process of both MB and Cu follows the pseudo-second-order model and Freundlich isotherm model. A plausible adsorption mechanism was discussed in detail. Regeneration tests clarified that the removal efficiencies toward both MB and Cu remained higher than 87% after five cycles. These results reveal the potentiality of UiO-66/GOCOOH@SA beads as an excellent adsorbent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444308 | PMC |
http://dx.doi.org/10.1021/acsomega.1c03479 | DOI Listing |
Microsc Res Tech
January 2025
School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang, China.
The atomic force microscope (AFM) image will be inclined and bent due to the tilt angle between the probe and the sample surface. When the least squares fitting method is used to correct the horizontal distortion of the AFM image, the shape structure that is lower or higher than the sample base will affect the final fitting correction result. In view of the limitations of existing methods and the diversity of AFM images, an AFM image level distortion correction method based on automatic feature marking is proposed.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Heterogeneous catalysts for parahydrogen-induced polarization (HET-PHIP) would be useful for producing highly sensitive contrasting agents for magnetic resonance imaging (MRI) in the liquid phase, as they can be removed by simple filtration. Although homogeneous hydrogenation catalysts are highly efficient for PHIP, their sensitivity decreases when anchored on porous supports due to slow substrate diffusion to the active sites and rapid depolarization within the channels. To address this challenge, we explored 2D metal-organic layers (MOLs) as supports for active Rh complexes with diverse phosphine ligands and tunable hydrogenation activities, taking advantage of the accessible active sites and chemical adaptability of the MOLs.
View Article and Find Full Text PDFUnlabelled: Pre-mRNA splicing, carried out in the nucleus by a large ribonucleoprotein machine known as the spliceosome, is functionally and physically coupled to the mRNA surveillance pathway in the cytoplasm called nonsense mediated mRNA decay (NMD). The NMD pathway monitors for premature translation termination signals, which can result from alternative splicing, by relying on the exon junction complex (EJC) deposited on exon-exon junctions by the spliceosome. Recently, multiple genetic screens in human cell lines have identified numerous spliceosome components as putative NMD factors.
View Article and Find Full Text PDFspores are essential for initiation, recurrence and transmission of the disease. The spore surface layers are composed of an outermost exosporium layer that surrounds another proteinaceous layer, the spore coat. These spore surfaces layers are responsible for initial interactions with the host and spore resistance properties contributing to transmission and recurrence of CDI.
View Article and Find Full Text PDFUnlabelled: The integrity of the hematopoietic stem cell (HSC) pool relies on efficient long-term self-renewal and the timely removal of damaged or differentiation-prone HSCs. Previous studies have demonstrated the PERK branch of the unfolded protein response (UPR) drives specific programmed cell death programs to maintain HSC pool integrity in response to ER stress. However, the role of PERK in regulating HSC fate remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!