Synthesizing novel photocatalysts that can effectively harvest photon energy over a wide range of the solar spectrum for practical applications is vital. Porphyrin-derived nanostructures with properties similar to those of chlorophyll have emerged as promising candidates to meet this requirement. In this study, tetrakis(4-carboxyphenyl) porphyrin (TCPP) nanofibers were formed on the surface of ZnO nanoparticles using a simple self-assembly approach. The obtained ZnO/TCPP nanofiber composites were characterized via scanning electron microscopy, X-ray diffraction analysis, and ultraviolet-visible absorbance and reflectance measurements. The results demonstrated that the ZnO nanoparticles with an average size of approximately 37 nm were well integrated in the TCPP nanofiber matrix. The resultant composite showed photocatalytic activity of ZnO and TCPP nanofibers concomitantly, with band gap energies of 3.12 and 2.43 eV, respectively. The ZnO/TCPP photocatalyst exhibited remarkable photocatalytic performance for RhB degradation with a removal percentage of 97% after 180 min of irradiation under simulated sunlight because of the synergetic activity of ZnO and TCPP nanofibers. The dominant active species participating in the photocatalytic reaction were O and OH, resulting in enhanced charge separation by exciton-coupled charge-transfer processes between the hybrid materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444207PMC
http://dx.doi.org/10.1021/acsomega.1c02808DOI Listing

Publication Analysis

Top Keywords

zno nanoparticles
12
tcpp nanofibers
12
photocatalytic performance
8
activity zno
8
zno tcpp
8
zno
5
self-assembly porphyrin
4
nanofibers
4
porphyrin nanofibers
4
nanofibers zno
4

Similar Publications

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

Particle emissions study from tire sample with nano-silver tracer from different steps of its life cycle. A new approach to trace emissions of tire microparticles.

Sci Total Environ

January 2025

Direction Milieux et impacts sur le vivant, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France.

Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.

View Article and Find Full Text PDF

Decoding Plant-Based Green Synthesis of Zinc Oxide Nanoparticles.

Chem Biodivers

January 2025

Physics Department, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 6283), Institut des Molécules et Matériaux du Mans, Le Mans Université, Le Mans, France.

Article Synopsis
  • This study compares the behavior of two plant species and their extracts in synthesizing zinc oxide nanoparticles from zinc nitrate hexahydrate.
  • Sugars, particularly glucose and sucrose, play a crucial role in this synthesis, comprising over 70% of the dried extract.
  • The process can successfully occur at low temperatures (120°C) but requires a specific ratio of reactants to ensure the production of "clean" ZnO nanoparticles.
View Article and Find Full Text PDF

Extracts of medicinal seeds can be used to synthesize nanoparticles (NPs) in more environmentally friendly ways than physical or chemical ways. For the first time, aqueous extract from unexploited grape seeds was used in this study to create Se/ZnO NPS utilizing a green technique, and their antimicrobial activity, cytotoxicity, antioxidant activities, and plant bio stimulant properties of the economic Vicia faba L. plant were evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Chickpeas and apricots are economically significant crops that suffer from severe fungal infections, traditionally managed with chemical fungicides that pose health and environmental risks.
  • Myco-synthesized (from fungi) and bacteria-synthesized zinc oxide (ZnO) nanoparticles were compared for their antifungal effectiveness against specific pathogens affecting these crops.
  • Results showed that myco-synthesized ZnO nanoparticles exhibited better antifungal properties at lower concentrations, highlighting the need for further research to enhance their application in agriculture as sustainable alternatives to chemical fungicides.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!