Pollinators can detect the color, shape, scent, and even temperature of the flowers they want to visit. Here, we present the previously unappreciated capacity of hoverflies (Eristalis tenax and Cheilosia albipila) to detect the electric field surrounding flowers. Using hoverflies as key dipteran pollinators, we explored the electrical interactions between flies and flowers-how a hoverfly acquired a charge and how their electrical sensing ability for target flowers contributed to nectar identification and pollination. This study revealed that rapid variations in a floral electric field were related to a nectar reward and increased the likelihood of the fly's return visits. We found that thoracic hairs played a role in the polarity of hoverfly charge, revealing their electro-mechanosensory capability, as in bumblebees (Bombus terrestris). Electrophysiological analysis of the hoverfly's antennae did not reveal neural sensitivity to the electric field, which favors the mechanosensory hairs as putative electroreceptive organs in both species of hoverflies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455601PMC
http://dx.doi.org/10.1038/s41598-021-98371-4DOI Listing

Publication Analysis

Top Keywords

electric field
16
electric
4
field detection
4
detection floral
4
floral cue
4
cue hoverfly
4
hoverfly pollination
4
pollination pollinators
4
pollinators detect
4
detect color
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!