Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Self-reports are conventionally used to measure political preferences, yet individuals may be unable or unwilling to report their political attitudes. Here, in 69 participants we compared implicit and explicit methods of political attitude assessment and focused our investigation on populist attitudes. Ahead of the 2019 European Parliament election, we recorded electroencephalography (EEG) from future voters while they completed a survey that measured levels of agreement on different political issues. An Implicit Association Test (IAT) was administered at the end of the recording session. Neural signals differed as a function of future vote for a populist or mainstream party and of whether survey items expressed populist or non-populist views. The combination of EEG responses and self-reported preferences predicted electoral choice better than traditional socio-demographic and ideological variables, while IAT scores were not a significant predictor. These findings suggest that measurements of brain activity can refine the assessment of socio-political attitudes, even when those attitudes are not based on traditional ideological divides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455561 | PMC |
http://dx.doi.org/10.1038/s41598-021-96193-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!