Most turkey research has been conducted with a regular corn particle size set through phase-feeding programs. This study's first objective was to determine the effect of increasing corn particle size through the feed phases on performance, processing yield, and feed milling energy usage in Large White commercial male turkey production. Zinc (Zn) and manganese (Mn) are essential microminerals for animals' healthy growth. The source in which these elements are supplied to the bird will determine their bioavailability, effect on bird growth, and subsequent environmental impact. This study's second objective was to measure both inorganic and chelated Zn and Mn sources on turkey performance, turkey carcass processing yields, and subsequent litter residues. Twelve hundred Nicolas Select male poults were randomly assigned to 48 concrete; litter-covered floor pens. The experimental design was a completely randomized block design with a 2 × 2 factorial arrangement of 2 sources of minerals (organic blend vs. inorganic) formulated to match breeder recommendations and 2 types of corn mean particle size (coarse corn [1,000-3,500 µm] vs. fine corn [276 µm]). The ASABE S319.4 standard was used to measure corn mean particle size. Bird performance, carcass processing yield, litter content of Zn and Mn, and pellet mill energy consumption were analyzed in SAS 9.4 in a mixed model. There was a reduction of pellet mill energy usage of 36% when coarse corn was added post-pelleting. Birds fed increasing coarse corn mean particle size were 250 g lighter on average in body weight (BW) than birds fed a constant control mean particle size. No difference was found in feed intake (FI) or feed conversion ratio (FCR). Birds fed methionine chelated Zn and Mn blended with inorganic mineral sources were 250 g heavier on average than birds fed only an inorganic source of minerals. In addition, feeding an organic blend of Zn and Mn resulted in greater breast meat yield. Litter from birds fed the control corn mean particle size, and inorganic minerals had a higher concentration of Zn in the litter but were not different when the chelated Zn/Mn were fed. In conclusion, increasing the corn mean particle size and adding it post pellet could save money during feed milling; however, birds might have a slightly lower BW. A combination of inorganic and chelated Zn and Mn may improve performance and increase total breast meat yields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463767PMC
http://dx.doi.org/10.1016/j.psj.2021.101444DOI Listing

Publication Analysis

Top Keywords

particle size
36
corn particle
32
birds fed
20
coarse corn
12
corn
11
particle
9
size
9
methionine chelated
8
large white
8
male turkey
8

Similar Publications

Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid.

ACS Appl Bio Mater

January 2025

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.

Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.

View Article and Find Full Text PDF

Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance.

View Article and Find Full Text PDF

Background: Incorporating β-carotene into food systems improves nutritional value by providing a natural source of vitamin A. However, maintaining its stability during processing and storage is a significant barrier for its bioavailability.

Results: This study investigated the utilization of banana rachis nanocellulose (BRNC) as a natural stabilizer in the formulation of Pickering nanoemulsion (PNE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!