The National Institute of Neurological Disorders and Stroke (NINDS) held a workshop titled "Next generation strategies for gene-targeted therapies of central nervous system (CNS) disorders" in September 2019 in Bethesda, MD, USA. The meeting brought together a multi-disciplinary group of experts in the field of CNS-directed gene-targeted therapy delivery from academia, industry, advocacy, and the government. The group was charged with identifying the key challenges and gaps in this evolving field, as well as suggesting potential solutions. The workshop was divided into four sessions: (1) control of level and location, (2) improving delivery and distribution, (3) enhancing models and manufacturing, and (4) impacting patients. Prior to the workshop, NINDS established working groups of key opinion leaders (KOLs) for each session. In pre-meeting teleconferences, KOLs were tasked with identifying the research gaps and key obstacles that delay and/or prevent gene-targeted therapies to move into the clinic. This approach allowed for the workshop to begin with problem-solving discussions and strategy development, as the key issues had been established. The overall purpose of the workshop was to consider knowledge gaps and potential strategies to inform the community around CNS gene-targeted therapies, including but not limited to researchers and funders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636163 | PMC |
http://dx.doi.org/10.1016/j.ymthe.2021.09.010 | DOI Listing |
Neurol Genet
February 2025
University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, PA.
Over 300 million people globally are affected by rare diseases, many of which present predominantly with neurologic symptoms. Rare neurologic disorders pose significant diagnostic and therapeutic challenges including delayed diagnoses, limited treatment options, and a shortage of specialists. However, advancements in diagnostics, particularly next-generation sequencing and expansion of newborn screening, have significantly shortened the time to diagnosis for many of these disorders.
View Article and Find Full Text PDFHepatol Commun
January 2025
Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the world and a growing cause of liver-related morbidity and mortality. Yet, at the same time, our understanding of the pathophysiology and genetic underpinnings of this increasingly common yet heterogeneous disease has increased dramatically over the last 2 decades, with the potential to lead to meaningful clinical interventions for patients. We have now seen the first pharmacologic therapy approved for the treatment of MASLD, and multiple other potential treatments are currently under investigation-including gene-targeted RNA therapies that directly extend from advances in MASLD genetics.
View Article and Find Full Text PDFOphthalmic Genet
January 2025
Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Introduction: Due to the recent advent of gene-targeted retinal therapies, the clinical value of high-yield genetic testing for inherited retinal dystrophies (IRDs) has increased considerably. However, diagnostic yield is limited by the reported patient populations in allele frequency databases. This study aimed to determine the effect of race and ethnicity on diagnostic yield in IRDs.
View Article and Find Full Text PDFDis Model Mech
January 2025
Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria.
Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo.
View Article and Find Full Text PDFNat Rev Neurol
January 2025
Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
The motor neuron disease amyotrophic lateral sclerosis (ALS) is a devastating condition with limited treatment options. The past few years have witnessed a ramping up of translational ALS research, offering the prospect of disease-modifying therapies. Although breakthroughs using gene-targeted approaches have shown potential to treat patients with specific disease-causing mutations, the applicability of such therapies remains restricted to a minority of individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!