As the global climate changes, biological populations have to adapt in place or move in space to stay within their preferred temperature regime. Empirical evidence suggests that shifting speeds of temperature isoclines are location and elevation dependent and may accelerate over time. We present a mathematical tool to study transient behaviour of population dynamics within such moving habitats to discern between populations at high and low risk of extinction. We introduce a system of reaction-diffusion equations to study the impact of varying shifting speeds on the persistence and distribution of a single species. Our model includes habitat dependent movement behaviour and habitat preference of individuals. These assumptions result in a jump in density across habitat types and generalize previous studies. We build and validate a numerical finite difference scheme to solve the resulting equations. Our numerical scheme uses a coordinate system where the location of the moving suitable habitat is fixed in space and a modification of a finite difference scheme to capture the jump in density. We explore a variety of shifting-speed scenarios and contribute insights into the mechanisms that support population persistence through time in shifting habitats. One common finding is that a strong bias for the suitable habitat helps the population persist at faster shifting speeds, yet sustains a smaller total population at slower shifting speeds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2021.108711 | DOI Listing |
Alzheimers Dement
December 2024
Rutgers University-Newark, Newark, NJ, USA.
Background: Alzheimer's disease (AD) is sometimes characterized as "type 3 diabetes" because hyperglycemia impairs cognitive function, particularly in the medial temporal lobe (MTL) and prefrontal regions. Further, both AD and type 2 diabetes (T2D) disproportionately impact African Americans. Although people with T2D are generally suggested to have lower episodic memory and executive function, limited data exist in older African Americans.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Miami, Coral Gables, FL, USA.
Background: Cerebral blood flow is decreased in mouse models and patients of Alzheimer's disease (AD). We identified that about 2% of cortical capillaries in the APP/PS1 mouse model of AD had stalled blood flow due to neutrophils obstructing capillaries and contributing to vascular inflammation. Neutrophils are more reactive in AD.
View Article and Find Full Text PDFCancer Biol Med
January 2025
Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
Artificial intelligence (AI) is significantly advancing precision medicine, particularly in the fields of immunogenomics, radiomics, and pathomics. In immunogenomics, AI can process vast amounts of genomic and multi-omic data to identify biomarkers associated with immunotherapy responses and disease prognosis, thus providing strong support for personalized treatments. In radiomics, AI can analyze high-dimensional features from computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) images to discover imaging biomarkers associated with tumor heterogeneity, treatment response, and disease progression, thereby enabling non-invasive, real-time assessments for personalized therapy.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
Oil spill disasters lead to widespread and long-lasting social, economical, environmental and ecological impacts. Technical challenges remain for conventional static adsorption due to hydrodynamic instability under complex water-flow conditions, which results in low oil-capture efficiency, time delay and oil escape. To address this issue, we design a vortex-anchored filter inspired by the anatomy of deep-sea glass sponges (E.
View Article and Find Full Text PDFSci Adv
January 2025
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA.
The Antarctic Circumpolar Current (ACC) dominates the transfer of heat, salt, and tracers around the Southern Ocean (SO), driving the upwelling of carbon-rich deep waters around Antarctica. Paleoclimate reconstructions reveal marked variability in SO circulation; however, few records exist coupling quantitative reconstructions of ACC flow with tracers of SO upwelling spanning multiple Pleistocene glacial cycles. Here, we reconstruct near-bottom flow speed variability in the SO south of Africa, revealing systematic glacial-interglacial variations in the strength and/or proximity of ACC jets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!