We developed a brain and spine magnetic resonance scoring system based on a magnetic resonance assessment of 9 patients with mucopolysaccharidosis type I-Hurler who underwent hematopoietic stem-cell transplantation. The score is reliable and correlates with long-term clinical and cognitive outcome in patients with mucopolysaccharidosis type I-Hurler.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpeds.2021.09.020DOI Listing

Publication Analysis

Top Keywords

patients mucopolysaccharidosis
12
mucopolysaccharidosis type
12
magnetic resonance
12
scoring system
8
type i-hurler
8
evidence treatment
4
treatment benefits
4
benefits patients
4
type i-hurler in
4
i-hurler in long-term
4

Similar Publications

Digital microfluidic platform for dried blood spot newborn screening of lysosomal storage diseases in Campania region (Italy): Findings from the first year pilot project.

Mol Genet Metab

December 2024

Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., 80145 Naples, Italy. Electronic address:

Background: Newborn screening (NBS) is a simple, non-invasive test that allows for the early identification of genetic diseases within the first days of a newborn's life. The aim of NBS is to detect potentially fatal or disabling conditions in newborns as early as possible, before the onset of disease symptoms. Early diagnosis enables timely treatments and improves the quality of life for affected patients.

View Article and Find Full Text PDF

Objective: To analyze the first referral service for rare diseases accredited by the Brazilian Ministry of Health, focusing on referral from the primary healthcare network through to diagnosis.

Methods: This is a descriptive study with patients treated between 2016 and 2021 at a referral hospital service located in Curitiba, Paraná, Brazil. Clinical and epidemiological data were obtained from medical records, as were the results of genetic tests at the hospital's clinical analysis laboratory.

View Article and Find Full Text PDF

Mucopolysaccharidosis (MPS) comprises a group of inherited metabolic diseases. Each MPS type is caused by a deficiency in the activity of one kind of enzymes involved in glycosaminoglycan (GAG) degradation, resulting from the presence of pathogenic variant(s) of the corresponding gene. All types/subtypes of MPS, which are classified on the basis of all kinds of defective enzymes and accumulated GAG(s), are severe diseases.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS I) is a metabolic disorder characterized by a deficiency in α-l-iduronidase (IDUA), leading to impaired glycosaminoglycan degradation. Current approved treatments seek to restore IDUA levels via enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). The effectiveness of these treatment strategies in preventing neurodegeneration is limited due to the inability of ERT to penetrate the blood-brain barrier (BBB) and HSCT's limited CNS reconstitution of IDUA levels.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal storage disorder leading to deleterious brain effects. While animal models suggested that MPS I severely affects white matter (WM), whole-brain diffusion tensor imaging (DTI) analysis was not performed due to MPS-related morphological abnormalities. 3T DTI data from 28 severe (MPS IH, treated with hematopoietic stem cell transplantation-HSCT), 16 attenuated MPS I patients (MPS IA) enrolled under the study protocol NCT01870375, and 27 healthy controls (HC) were analyzed using the free-water correction (FWC) method to resolve macrostructural partial volume effects and unravel differences in DTI metrics accounting for microstructural abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!