Terrestrial carbon cycling is largely mediated by soil food webs. Identifying the carbon source for soil animals has been desired to distinguish their roles in carbon cycling, but it is challenging for small invertebrates at low trophic levels because of methodological limitations. Here, we combined radiocarbon (C) analysis with stable isotope analyses (C and N) to understand feeding habits of soil microarthropods, especially focusing on springtail (Collembola). Most Collembola species exhibited lower ΔC values than litter regardless of their C and N signatures, indicating their dependence on young carbon. In contrast with general patterns across all taxonomic groups, we found a significant negative correlation between N and ΔC values among the edaphic Collembola. This means that the species with higher N values depend on C from more recent photosynthate, which suggests that soil-dwelling species generally feed on mycorrhizae to obtain root-derived C. Many predatory taxa exhibited higher ΔC values than Collembola but lower than litter, indicating non-negligible effects of collembolan feeding habits on the soil food web. Our study demonstrated the usefulness of radiocarbon analysis, which can untangle the confounding factors that change collembolan N values, clarify animal feeding habits and define the roles of organisms in soil food webs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455171 | PMC |
http://dx.doi.org/10.1098/rsbl.2021.0353 | DOI Listing |
PLoS One
January 2025
Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.
Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA.
Climate change threatens smallholder agriculture and food security in the Global South. While cropland expansion is often used to counter adverse climate effects despite ecological trade-offs, the benefits for diets and nutrition remain unclear. This study quantitatively examines relationships between climate anomalies, forest loss from cropland expansion, and dietary outcomes in Nigeria, Africa's most populous country.
View Article and Find Full Text PDFArch Virol
January 2025
Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy.
Here, we report the complete genome sequence of a new carlavirus causing mosaic on mint plants in Italy, which we have tentatively named "mint virus C" (MVC). Flexuous particles of around 600 nm were observed using transmission electron microscopy, and next-generation sequencing was performed to determine the nucleotide sequence of the MVC genome, which was found to be 8558 nt long, excluding the poly(A) tail, and shows the typical organization of a carlavirus. The putative proteins encoded by MVC are 44-56% identical to the closest matches in the NCBI database, suggesting that MVC should be considered a member of a new species in the genus Carlavirus.
View Article and Find Full Text PDFArch Microbiol
January 2025
Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
Unlabelled: Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!