Nanogels are cross-linked, nano-sized hydrogels with dimensions ranging from 20 to 200 nm. Nanogel-based nanoplatforms have proven to be an excellent choice for pharmaceutical formulations. Nanosystems have properties that are very useful in polymeric drug delivery applications, and their particular strength is that they have these nanosystemic properties and can thus merge with polymeric materials. Drug-carrier size is designed to be nano-sized in order to maintain optimal stability, resulting in more surface area and interior space. This also allows for a prolonged period of time for loaded pharmaceuticals to circulate. They can be classified by stimuli responsive or non-responsive behavior and type of linkages present in the network chains of gel structure. Nanogel can be synthesized by Photolithographic, modified pullulan, emulsion polymerization reverse microemulsion polymerization inverse miniemulsion polymerization and free radical crosslinking polymerization technique. Hybrid nanogels are different from conventional polymer nanoparticles often employed for drug administration. They can encapsulate bioactive medicines and regulate the release of such medications over time and in particular areas. The hybrid nanogels used to create a specific form of the hybrid, especially one geared towards increasing targeted drug delivery, enhance the effectiveness of ailment treatments, but perhaps the introduction of a multifunctional nanogel-based drug delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2021.1982643DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
delivery system
8
hybrid nanogels
8
drug
5
insight nanogels
4
nanogels novel
4
novel drug
4
delivery
4
system potential
4
hybrid
4

Similar Publications

Multi-Layered Microneedles Loaded with Microspheres.

AAPS PharmSciTech

January 2025

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..

Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.

View Article and Find Full Text PDF

Chitosan nanoencapsulation of Turbinaria triquetra metabolites in the management of podocyturia in nephrotoxic rats.

Sci Rep

January 2025

Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute , National Research Centre, Dokki, Cairo, 12622, Egypt.

Cisplatin is a chemotherapeutic drug, which exhibits undesirable side effects. Chitosan nanoparticles are promising for drug delivery. The aim of this study was to determine the effect of the brown alga Turbinaria triquetra ethyl acetate fraction and polysaccharides, either loaded on chitosan nanoparticles or free, against podocyturia and cisplatin nephrotoxicity in rats.

View Article and Find Full Text PDF

Compounds containing the piperidine group are highly attractive as building blocks for designing new drugs. Functionalized piperidines are of significant interest due to their prevalence in the pharmaceutical field. Herein, 3-oxo-3-(piperidin-1-yl) propanenitrile has been synthesized, and piperidine-based sodium alginate/poly(vinyl alcohol) films have been prepared.

View Article and Find Full Text PDF

Progressing nanotechnology to improve diagnosis and targeted therapy of Diabetic Retinopathy.

Biomed Pharmacother

January 2025

Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

The inherent limitations of traditional treatments for Diabetic Retinopathy (DR) have spurred the development of various nanotechnologies, offering a safer and more efficient approach to managing the disease. Nanomedicine platforms present promising advancements in the diagnosis and treatment of DR by enhancing imaging capabilities, enabling targeted and controlled drug delivery. These innovations ultimately lead to more effective and personalized treatments with fewer side effects.

View Article and Find Full Text PDF

Janus LAAM-loaded electrospun fibrous buccal films for treating opioid use disorder.

Biomaterials

December 2024

Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Pharmaceutical Engineering, Center for Drug Discovery, Department of Pediatrics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA. Electronic address:

The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!