Hernandulcin Production in Cell Suspensions of Phyla Scaberrima: Exploring Hernandulcin Accumulation through Physical and Chemical Stimuli.

Chem Biodivers

Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla. Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, México.

Published: November 2021

Hernandulcin (HE) is a non-caloric sweetener synthesized by the Mexican medicinal plant Phyla scaberrima. Herein we present the results of HE production through cell suspensions of P. scaberrima as well as the influence of pH, temperature, biosynthetic precursors and potential elicitors to enhance HE accumulation. The incorporation of mevalonolactone (30-400 mg L ) farnesol (30-400 mg L ), AgNO3 (0.025-0.175 M), cellulase (5-60 mg L ; 0.3 units/mg), chitin (20-140 mg L ) and (+)-epi-α-bisabolol (300-210 mg L ) to the cell suspensions, resulted in a differential accumulation of HE and biomass. Among elicitors assayed, chitin, cellulase and farnesol increased HE production from 93.2 to ∼160 mg L but, (+)-epi-α-bisabolol (obtained by a synthetic biology approach) increased HE accumulation up to 182.7 mg L . HE produced by the cell suspensions was evaluated against nine strains from six species of gastrointestinal bacteria revealing moderate antibacterial activity (MIC, 214-465 μg mL ) against Staphylococcus aureus, Escherichia coli and Helicobacter pylori. Similarly, HE showed weak toxicity against Lactobacillus sp. and Bifidobacterium bifidum (>1 mg mL ), suggesting a selective antimicrobial activity on some species of gut microbiota. According to our results, chitin and (+)-epi-α-bisabolol were the most effective molecules to enhance HE accumulation in cell suspensions of P. scaberrima.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202100611DOI Listing

Publication Analysis

Top Keywords

cell suspensions
20
production cell
8
phyla scaberrima
8
suspensions p scaberrima
8
enhance accumulation
8
cell
5
suspensions
5
accumulation
5
hernandulcin production
4
suspensions phyla
4

Similar Publications

Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to investigate the processes of penetration and reorganization of PBCA nanoparticles when deposited in a phospholipid monolayer subphase.

View Article and Find Full Text PDF

Bananas and plantains are important staple food crops affected by biotic and abiotic stresses. The gene editing technique via Clustered Regularly Interspaced Short Palindromic Repeats associated with the Cas protein (CRISPR/Cas) has been used as an important tool for development of cultivars with high tolerance to stresses. This study sought to develop a protocol for the construction of vectors for gene knockout.

View Article and Find Full Text PDF

A Novel Approach Using LuxSit-i Enhanced Toehold Switches for the Rapid Detection of .

Biosensors (Basel)

December 2024

Military Medical Sciences Academy, Tianjin 300050, China.

() is a significant concern, as it can cause severe infections and hemolytic trauma. Given its prevalence in seawater and coastal seafood, it poses a substantial risk as a foodborne pathogen. Biosensor-based detection technology has been continuously evolving, and toehold switches have emerged as a promising area within it, especially in the detection of RNA viruses.

View Article and Find Full Text PDF

Introduction: Consuming hypercaloric diets during pregnancy induces metabolic, immune, and maternal intestinal dysbiosis disorders. These conditions are transferred to the offspring through the placenta and breastfeeding, increasing susceptibility to metabolic diseases. We investigated the effect of GG supplementation on offspring maternally programmed with a hypercaloric diet.

View Article and Find Full Text PDF

Valsa canker, caused by fungal pathogens in Valsa species, is a fungal disease of apple and pear growing in China and even in Asia. Malectin-like kinases play crucial roles in plant recognition of the pathogen-induced signals and subsequent activation of partially host immune responses. However, the role of MEDOS1 (MDS1), a Malectin-like kinase, in plant immunity has not yet been extensively explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!