A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Itaconate regulates macrophage function through stressful iron-sulfur cluster disrupting and iron metabolism rebalancing. | LitMetric

Itaconate regulates macrophage function through stressful iron-sulfur cluster disrupting and iron metabolism rebalancing.

FASEB J

Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China.

Published: October 2021

AI Article Synopsis

  • Lipopolysaccharide (LPS) triggers the expression of aconitate decarboxylase (IRG1) in macrophages, resulting in increased levels of the metabolite itaconate, but its specific effects on macrophage function are not fully understood.
  • The researchers established that itaconate influences macrophage functions by affecting IL-1β secretion and iron metabolism, and confirmed these effects using IRG1 knockout THP-1 cell lines and various inhibitors.
  • Their findings show that itaconate hampers the activity of aconitases, enzymes crucial for iron metabolism and IL-1β secretion, by damaging iron-sulfur clusters, highlighting the regulatory role of IRG1 and itacon

Article Abstract

Lipopolysaccharide (LPS)-stimulated macrophages express an aconitate decarboxylase (IRG1, also called ACOD1), leading to accumulation of the endogenous metabolite itaconate. However, the precise mechanisms by which elevated itaconate levels alter macrophage function are not clear. Our hypothesis is itaconate affects macrophage function through some uncertain mechanism. Based on this, we established a transcriptional and proteomic signature of macrophages stimulated by itaconate and identified the pathways of IL-1β secretion and altered iron metabolism. Consistently, the effect of IRG1 deficiency on IL-1β secretion and iron metabolism was confirmed in IRG1 knockout THP-1 cell lines. Several common inhibitors and other compounds were used to examine the molecular mechanisms involved. Only cysteine and antioxidants (catechin hydrate) could inhibit caspase-1 activation and IL-1β secretion in itaconate-stimulated macrophages. We further found that aconitase activity was decreased by itaconate stimulation. Our results demonstrate the counteracting effects of overexpression of mitochondrial aconitase (ACO2, a tricarboxylic acid cycle enzyme) or cytosolic aconitase (ACO1, an iron regulatory protein) on IL-1β secretion and altered iron metabolism. Both enzyme activities were inhibited by itaconate because of iron-sulfur (Fe-S) cluster destruction. Our findings indicate that the immunoregulatory functions of IRG1 and itaconate in macrophages are stressful Fe-S cluster of aconitases disrupting and iron metabolism rebalancing.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202100726RRDOI Listing

Publication Analysis

Top Keywords

iron metabolism
20
il-1β secretion
16
macrophage function
12
itaconate
8
disrupting iron
8
metabolism rebalancing
8
secretion altered
8
altered iron
8
iron
6
metabolism
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!