Predictive values of a binary diagnostic test are often evaluated under a random sample design. When the disease is rare, however, such a design might not be as efficient as a nested case-control design where the cases are oversampled from a large existing cohort. Under a nested case-control design, direct proportion estimators of predictive values are biased because cases are oversampled. Consistent estimates of predictive values can be easily obtained by inverse probability weighting (IPW) method. The only difficulty with these IPW estimators has been the absence of expressions for their variances. To fill this gap, in the current paper, we obtain the asymptotic variance formulas for the IPW estimators of predictive values. Unlike their counterparts from weighted logistic regression, our variance formulas take into account the variance of the estimated weights in the IPW estimators of predictive values. We further use the proposed variance formulas to examine the gain in efficiency under a nested case-control design compared with a simple random sampling design. Our results clearly show that when the disease is rare, a nested case-control design can achieve a substantial amount of variance reduction by oversampling cases, compared with a random sample design. Finally, we compare via simulation the accuracy of the proposed variance formulas with the existing methods and illustrate the proposed method by a real data example evaluating the accuracy of D-dimer test.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10543406.2021.1975130 | DOI Listing |
J Econ Entomol
January 2025
Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou, China.
The Anoplophora chinensis (Coleoptera: Cerambycidae) (Forster), a serious phytophagous pest threatening Castanea mollissima Blume and Castanea seguinii Dode, poses risks of ecological imbalance, significant economic loss, and increased management difficulties if not properly controlled. This study employs optimized MaxEnt models to analyze the potential distribution areas of A. chinensis and its host plants under current and future climate conditions, identifying their movement pathways and relative dynamics.
View Article and Find Full Text PDFJ Food Sci
January 2025
Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.
Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.
View Article and Find Full Text PDFHealth Rep
January 2025
formerly with the Health Analysis Division, Statistics Canada.
Background: Statistics Canada routinely collects information on functional health and related concepts. Recently, the Washington Group on Disability Statistics (WG) measure of disability has been introduced to the Canadian Community Health Survey (CCHS). The WG measure is used as a tool for developing internationally comparable data on disability.
View Article and Find Full Text PDFOncologist
January 2025
Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
Background: Peritoneal metastasis (PM) after the rupture of hepatocellular carcinoma (HCC) is a critical issue that negatively affects patient prognosis. Machine learning models have shown great potential in predicting clinical outcomes; however, the optimal model for this specific problem remains unclear.
Methods: Clinical data were collected and analyzed from 522 patients with ruptured HCC who underwent surgery at 7 different medical centers.
Environ Sci Pollut Res Int
January 2025
Research Engineer I, Applied Research Center for Environment & Marine Studies, Research Institute, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.
Concerns regarding disinfection byproducts (DBPs) in drinking water persist, with measurements in water treatment plants (WTPs) being relatively easier than those in water distribution systems (WDSs) due to accessibility challenges, especially during adverse weather conditions. Machine learning (ML) models offer improved predictions of DBPs in WDSs. This study developed multiple ML models to predict Trihalomethanes (THMs), Haloacetic Acids (HAAs), Dichloroacetonitrile (DCAN), and N-nitrosodimethylamine (NDMA) in WDSs using data collected over 13 years (2008-2020) from 113 water supply systems (WSS) in Ontario.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!