Stimuli-responsive materials afford researchers an opportunity to synthesize controlled-release carriers with various potential applications, especially for reducing the abuse of chemical reagents in farmland soil. To enhance the efficiency of agrochemical utilization, redox- and enzyme-responsive macrospheres were prepared by self-assembling β-cyclodextrin-modified zeolite and ferrocenecarboxylic acid (FcA)-grafted carboxymethyl cellulose (CMC). Scanning electron microscopy and Brunauer-Emmett-Teller analysis revealed that pores of zeolite were sealed by the surface coupling of FcA-modified CMC via the formation of an inclusion complex. Salicylic acid (SA) was loaded as a model agrochemical. The release of SA from macrospheres could be triggered in the presence of hydrogen peroxide (oxidant) and cellulase (enzyme); and the corresponding release percentages, 85.2 and 80.4%, were much higher than those of the control sample without responsive groups in water (12.6%) after 12 h. A release kinetic study showed that cellulase could promote carrier dissolution more effectively than the oxidant. The results demonstrate that the dual-responsive macrospheres are promising as a smart and effective carrier for the controlled release of agrochemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.1c01304 | DOI Listing |
J Sci Food Agric
October 2024
College of Food Science and Engineering, Northwest A&F University, Yangling, China.
The increasing prevalence of health issues, driven by sedentary lifestyles and unhealthy diets in modern society, has led to a growing demand for natural dietary supplements to support overall health and well-being. Probiotic dietary supplements have garnered widespread recognition for their potential health benefits. However, their efficacy is often hindered by the hostile conditions of the gastrointestinal tract.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China.
The charge-reversal nano-drug delivery system (CRNDDS) is a promising system for delivering chemotherapy drugs and has gained widespread application in cancer treatment. In this review, we summarize the recent advancements in CRNDDSs in terms of cancer treatment. We also delve into the charge-reversal mechanism of the CRNDDSs, focusing on the acid-responsive, redox-responsive, and enzyme-responsive mechanisms.
View Article and Find Full Text PDFCarbohydr Polym
November 2024
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China. Electronic address:
Int J Biol Macromol
September 2024
School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China. Electronic address:
Curr Pharm Des
October 2024
Center for Biological and Health Sciences, State University of Paraíba, R. Baraúnas, 351 - Universitário, Campina Grande - PB, 58429-500, Paraíba, Brazil.
The incidence of breast cancer has been increasing over the last four decades, although the mortality rate has decreased. Endocrine therapy and chemotherapy are the most used options for cancer treatment but several obstacles are still attributed to these therapies. Smart materials, such as nanocarriers for targeting, delivery and release of active ingredients, sensitive to intrinsic-stimuli (pH-responsive, redox-responsive, enzyme- responsive, and thermo-responsive) and extrinsic-stimuli (ultrasound-responsive, magnetic-responsive, light-responsive) have been studied as a novel strategy in breast cancer therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!