Lovastatin is an anti-cholesterol medicine that is commonly prescribed to manage cholesterol levels, and minimise the risk of suffering from heart-related diseases. Aspergillus terreus (ATCC 20542) supplied with carbohydrates or sugar alcohols can produce lovastatin. The present work explored the application of metabolic engineering in A. terreus to re-route the precursor flow towards the lovastatin biosynthetic pathway by simultaneously overexpressing the gene for acetyl-CoA carboxylase (acc) to increase the precursor flux, and eliminate ( +)-geodin biosynthesis (a competing secondary metabolite) by removing the gene for emodin anthrone polyketide synthase (gedC). Alterations to metabolic flux in the double mutant (gedCΔ*acc) strain and the effects of using two different substrate formulations were examined. The gedCΔ*acc strain, when cultivated with a mixture of glycerol and lactose, significantly (p < 0.05) increased the levels of metabolic precursors malonyl-CoA (48%) and acetyl-CoA (420%), completely inhibited the (+)-geodin biosynthesis, and increased the level of lovastatin [152 mg/L; 143% higher than the wild-type (WT) strain]. The present work demonstrated how the manipulation of A. terreus metabolic pathways could increase the efficiency of carbon flux towards lovastatin, thus elevating its overall production and enabling the use of glycerol as a substrate source. As such, the present work also provides a framework model for other medically or industrially important fungi to synthesise valuable compounds using sustainable carbon sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-021-00393-w | DOI Listing |
BMC Microbiol
January 2025
Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, Fujian, China; Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, Fujian, China. Electronic address:
Bamboo vinegar has been applied in livestock and fisheries as food additives. In this study, the antioxidant and antifungal properties of bamboo vinegar powder extract (BVPE) and its bioactive compounds were explored. BVPE exhibited significant free radical scavenging activity against DPPH and ABTS radicals, along with notable antifungal effects against Aspergillus terreus and Paecilomyces variotii.
View Article and Find Full Text PDFPrep Biochem Biotechnol
January 2025
Department of Biotechnology, Arunai Engineering College, Tiruvannamalai, India.
The L-asparaginase is commercial enzyme used as chemotherapeutic agent in cancer treatment and food processing agent in backed and fried food industries. In the present research work, the artificial intelligence and machine learning techniques were employed for modeling and optimization of fermentation process conditions for enhanced production of L-asparaginase by submerged fermentation of . The experimental L-asparaginase activity obtained using central composite experiment design was used for optimization.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy).
View Article and Find Full Text PDFPhytochemistry
December 2024
National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!