The posterior parietal cortex (PPC) is important for visuospatial attention. The primate PPC shows functional differentiation such that dorsal areas are implicated in top-down, controlled attention, and ventral areas are implicated in bottom-up, stimulus-driven attention. Whether the rat PPC also shows such functional differentiation is unknown. Here, we address this open question using functional neuroanatomy and in vivo electrophysiology. Using conventional tract-tracing methods, we examined connectivity with other structures implicated in visuospatial attention including the lateral posterior nucleus of the thalamus (LPn) and the postrhinal cortex (POR). We showed that the LPn projects to the entire PPC, preferentially targeting more ventral areas. All parts of the PPC and POR are reciprocally connected with the strongest connections evident between ventral PPC and caudal POR. Next, we simultaneously recorded neuronal activity in dorsal and ventral PPC as rats performed a visuospatial attention (VSA ) task that engages in both bottom-up and top-down attention. Previously, we provided evidence that the dorsal PPC is engaged in multiple cognitive process including controlled attention (Yang et al. 2017). Here, we further showed that ventral PPC cells respond to stimulus onset more rapidly than dorsal PPC cells, providing evidence for a role in stimulus-driven, bottom-up attention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070340 | PMC |
http://dx.doi.org/10.1093/cercor/bhab308 | DOI Listing |
Pulmonology
December 2025
Laboratory of Experimental Therapeutics, LIM-20, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.
Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany.
The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.
View Article and Find Full Text PDFLangmuir
January 2025
Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
The amount of incorporation of linear alcohols and ethers in HSiWO·6HO (HSiW·6HO, 50 wt %) supported on silica (SiO) was estimated by a conventional volumetric method and infrared (IR) spectroscopy, and the state of involved molecules was elucidated. First, the attribution of the key IR band at 2200 cm, which was observed for the water of crystallization of HSiW·6HO, to HO species (protons) was verified by coincident observation of thermogravimetric-differential thermal analysis, X-ray diffraction (XRD), and IR spectroscopy during thermal treatment in addition to the isotope exchange with DO. The 2200 cm band was gradually decreased in intensity by increasing the amount of adsorption of pyridine and was totally consumed at saturation, while the volumetric method provided the accurate number of included pyridine molecules.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!