The role of invertebrates in some acanthocephalan life cycles is unclear because juvenile acanthocephalans are difficult to identify to species using morphology. Most reports suggest acanthocephalans from turtle definitive hosts use ostracods as intermediate hosts and snails as paratenic hosts. However, laboratory studies of the life cycle suggest that ostracods and snails are both required hosts in the life cycle. To elucidate the role of ostracods and snails in acanthocephalan life cycles better, we collected 558 freshwater snails of 2 species, including Planorbella cf. Planorbella trivolvis and Physa acuta, from 23 wetlands in Oklahoma, U.S.A., and examined them for acanthocephalan infections. Additionally, we examined 37,208 ostracods of 4 species, Physocypria sp. (morphotype 1), Cypridopsis sp., Stenocypris sp., and Physocypria sp. (morphotype 2) for juvenile acanthocephalans from 2 wetlands in Oklahoma. Juvenile acanthocephalans were morphologically characterized, and the complete internal transcribed spacer (ITS) region of nuclear rDNA was sequenced from acanthocephalans infecting 11 ostracod and 13 snail hosts. We also sampled 10 red-eared slider turtles, Trachemys scripta elegans, and 1 common map turtle, Graptemys geographica, collected from Oklahoma, Arkansas, and Texas and recovered 1,854 adult acanthocephalans of 4 species. The ITS of 17 adult acanthocephalans of 4 species from turtle hosts were sequenced and compared to juvenile acanthocephalan sequences from ostracod and snail hosts from this study and GenBank to determine conspecificity. Of the 23 locations sampled for snails, 7 (30%) were positive for juvenile acanthocephalans in the genus Neoechinorhynchus. The overall prevalence and mean intensity of acanthocephalans in Planorbella cf. P. trivolvis and P. acuta were 20% and 2 (1-6) and 2% and 1 (1), respectively. In contrast, only 1 of 4 species of ostracods, Physocypria sp. (morphotype 1), was infected with larval/juvenile Neoechinorhynchus spp. with an overall prevalence of 0.1% and a mean intensity of 1 (1-2). Although 4 species of acanthocephalans infected turtle definitive hosts, including Neoechinorhynchus chrysemydis, Neoechinorhynchus emydis, Neoechinorhynchus emyditoides, and Neoechinorhynchus pseudemydis, all the ITS sequences from cystacanths infecting snail hosts were conspecific with N. emydis. In contrast, the ITS sequences from larval/juvenile acanthocephalans from ostracods were conspecific with 2 species of acanthocephalans from turtles (N. emydis and N. pseudemydis) and 1 species of acanthocephalan from fish (Neoechinorhynchus cylindratus). These results indicate that N. emydis infects freshwater snails, whereas other species of Neoechinorhynchus appear not to infect snail hosts. We document new ostracod and snail hosts for Neoechinorhynchus species, including the first report of an ostracod host for N. pseudemydis, and we provide novel molecular barcodes that can be used to determine larva, juvenile, and adult conspecificity of Neoechinorhynchus species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1645/20-130 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!