Initiation of skeletal muscle contraction is triggered by rapid activation of RYR1 channels in response to sarcolemmal depolarization. RYR1 is intracellular and has no voltage-sensing structures, but it is coupled with the voltage-sensing apparatus of CaV1.1 channels to inherit voltage sensitivity. Using an opto-electrophysiological approach, we resolved the excitation-driven molecular events controlling both CaV1.1 and RYR1 activations, reported as fluorescence changes. We discovered that each of the four human CaV1.1 voltage-sensing domains (VSDs) exhibits unique biophysical properties: VSD-I time-dependent properties were similar to ionic current activation kinetics, suggesting a critical role of this voltage sensor in CaV1.1 activation; VSD-II, VSD-III, and VSD-IV displayed faster activation, compatible with kinetics of sarcoplasmic reticulum Ca2+ release. The prominent role of VSD-I in governing CaV1.1 activation was also confirmed using a naturally occurring, charge-neutralizing mutation in VSD-I (R174W). This mutation abolished CaV1.1 current at physiological membrane potentials by impairing VSD-I activation without affecting the other VSDs. Using a structurally relevant allosteric model of CaV activation, which accounted for both time- and voltage-dependent properties of CaV1.1, to predict VSD-pore coupling energies, we found that VSD-I contributed the most energy (~75 meV or ∼3 kT) toward the stabilization of the open states of the channel, with smaller (VSD-IV) or negligible (VSDs II and III) energetic contribution from the other voltage sensors (<25 meV or ∼1 kT). This study settles the longstanding question of how CaV1.1, a slowly activating channel, can trigger RYR1 rapid activation, and reveals a new mechanism for voltage-dependent activation in ion channels, whereby pore opening of human CaV1.1 channels is primarily driven by the activation of one voltage sensor, a mechanism distinct from that of all other voltage-gated channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460119 | PMC |
http://dx.doi.org/10.1085/jgp.202112915 | DOI Listing |
Bio Protoc
January 2025
Department of Biomedicine, University of Bergen, Bergen, Norway.
During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.
View Article and Find Full Text PDFCureus
December 2024
Pediatric Neurology, Bahrain Defence Force Hospital, Riffa, BHR.
Super-refractory status epilepticus (SRSE) is defined as status epilepticus that persists or recurs after treatment with anesthetic agents for more than 24 hours, including cases with recurrent seizures on reduction or withdrawal of anesthetic drugs. Super-refractory status epilepticus presents a significant challenge for neurologists, particularly when standard treatments fail to achieve seizure control. Lacosamide, which has a unique mechanism involving modulating voltage-gated sodium channels by enhancing their slow inactivation, has emerged as a potential option for managing SRSE.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea. Electronic address:
Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, VIT University, Tamilnadu, 632014, India.
Materials (Basel)
January 2025
Department of Mechanical Engineering, Samsun University, 55420 Samsun, Turkey.
This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!