A cell-free enantioselective transformation of the carbon atom of CO has never been reported. In the urgent context of transforming CO into products of high value, the enantiocontrolled synthesis of chiral compounds from CO would be highly desirable. Using an original hybrid chemoenzymatic catalytic process, we report herein the reductive oligomerization of CO into C (dihydroxyacetone, DHA) and C (l-erythrulose) carbohydrates, with perfect enantioselectivity of the latter chiral product. This was achieved with the key intermediacy of formaldehyde. CO is first reduced selectively by 4e by an iron-catalyzed hydroboration reaction, leading to the isolation and complete characterization of a new bis(boryl)acetal compound derived from dimesitylborane. In an aqueous buffer solution at 30 °C, this compound readily releases formaldehyde, which is then involved in selective enzymatic transformations, giving rise either (i) to DHA using a formolase (FLS) catalysis or (ii) to l-erythrulose with a cascade reaction combining FLS and d-fructose-6-phosphate aldolase (FSA) A129S variant. Finally, the nature of the synthesized products is noteworthy, since carbohydrates are of high interest for the chemical and pharmaceutical industries. The present results prove that the cell-free synthesis of carbohydrates from CO as a sustainable carbon source is a possible alternative pathway in addition to the intensely studied biomass extraction and syntheses from fossil resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c07872 | DOI Listing |
Chem Sci
December 2024
Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
Securinega alkaloids, known for their unique structures and neuroplasticity-inducing potential, are promising candidates for treating neurodegenerative diseases such as depression and substance use disorders (SUD). Herein, we delineate the total synthesis of two dimeric Rauhut-Currier (RC) reaction-based securinega alkaloids, (-)-flueggenine A and (-)-15'--flueggenine D. The key step involved a novel reductive Heck dimerization strategy, utilizing a silyl-tethered enone coupling partner to ensure the desired reactivity and stereoselectivity.
View Article and Find Full Text PDFNeurotherapeutics
December 2024
Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Electronic address:
Alzheimer's disease (AD) is associated with memory and cognitive impairment caused by progressive degeneration of neurons. The events leading to neuronal death are associated with the accumulation of aggregating proteins in neurons and glia of the affected brain regions, in particular extracellular deposition of amyloid plaques and intracellular formation of tau neurofibrillary tangles. Moreover, the accumulation of pathological tau proteoforms in the brain concurring with disease progression is a key feature of multiple neurodegenerative diseases, called tauopathies, like frontotemporal dementia (FTD) where autosomal dominant mutations in the tau encoding MAPT gene provide clear evidence of a causal role for tau dysfunction.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
December 2024
Institute of Molecular Biology, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung, 402202, Taiwan.
J Control Release
January 2025
Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada. Electronic address:
ACS Omega
October 2024
Sino Oil King Shine Chemical Co., Ltd, Langfang, Hebei 065000, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!