Understanding the mechanisms of aggregation-induced emission (AIE) is essential for the rational design and deployment of AIEgens toward various applications. Such a deep mechanistic understanding demands a thorough investigation of the excited-state behaviors of AIEgens. However, because of considerable complexity and rapid decay, these behaviors are often not experimentally accessible and the mechanistic comprehension of many AIEgens is lacking. Herein, utilizing detailed quantum chemical calculations, we provide insights toward the AIE mechanism of 1-(,-dialkylamino)-naphthalene (DAN) derivatives. Our theoretical analysis, corroborated by experimental observations, leads to the discovery that modulating the formation of the twisted intramolecular charge transfer (TICT) state (caused by the rotation of the amino groups) and managing the steric hindrance to minimize solid-state intermolecular interactions provides a plausible explanation for the AIE characteristics of DAN derivatives. These results will inspire the deployment of the TICT mechanism as a useful design strategy toward AIEgen development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.1c06263 | DOI Listing |
Chemistry
January 2025
Yamaguchi University, Department of Chemistry, 753-8512, Yamaguchi, JAPAN.
We report herein the synthesis of an unprecedented isomer of perylene, dicyclohepta[cd,fg]-as-indacene bearing two phenyl groups (1-Ph) by the nickel-mediated intramolecular homocoupling of a 4,4'-biazulene derivative (2). The X-ray crystallographic analysis and theoretical calculations revealed that 1-Ph adopts a unique helically twisted geometry although the local aromaticity of azulene moieties was preserved. The double covalent linkage of the two azulene skeletons imparts significant orbital interaction, which affords near-infrared (NIR) absorption (up to 1720 nm) and remarkable redox behaviors despite its closed-shell electronic structure.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.
View Article and Find Full Text PDFChiral amines and amino alcohols form an important category of molecules employed in the designing of new drugs and catalyst. Herein, we present a helically-twisted stereodynamic dialdehyde probe 1 for the determining of absolute configuration, and enantiomeric excess of chiral amine and amino alcohols. Probe 1 is based on the pyridine-2,6-dicarboxamide (PDC) core and undergoes rapid interconversion between the P- and M- conformers.
View Article and Find Full Text PDFThe title compound, CHClNO, is significantly distorted from planarity, with a twist angle between the planes through the hy-droxy-benzene and acetamide groups being 23.5 (2)°. This conformation is supported by intra-molecular C-H⋯O and N-H⋯Cl contacts.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:
Excited-state intramolecular proton transfer (ESIPT) reactions are one of the fundamental energy transformation reactions in catalysis and biological process. The combining ESIPT with the twisted intramolecular charge transfer (TICT) brings the richness of optical, photoelectronic performances to certain functional compounds. Delineating the mechanism of ESIPT + TICT reactions and further understanding why a specific functional group dominates are fundamentally crucial for the design and application of the functionally photoelectric materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!