Serosurveys are a key resource for measuring SARS-CoV-2 cumulative incidence. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce adjusted estimates of seroprevalence from raw serosurvey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a post-infection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce adjusted seroprevalence estimates from five large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identify substantial differences between reported and adjusted estimates of over two-fold in the results of some surveys, and provide a tool for practitioners to generate adjusted estimates with pre-set or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452112 | PMC |
http://dx.doi.org/10.1101/2021.09.09.21263139 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!