This study aimed to investigate the effect and mechanism of miR-26a-5p on cardiomyocyte injury induced by hypoxia/reoxygenation (H/R).After construction of an H/R model in rat cardiomyocyte H9c2 cells, miR-26a-5p in the cells was interfered with (cells transfected with miR-26a-5p inhibitor) or overexpressed (cells transfected with a miR-26a-5p mimics). The viability and the apoptosis rate of cells in each group were detected using CCK-8 and flow cytometry; the relationship between miR-26a-5p and WNT5A was verified by a dual-luciferase reporter assay; the expression of miR-26a-5p, WNT5A, cleavedcaspase3 and Wnt/β-catenin signaling pathway-related proteins in each group was detected using qRT-PCR or Western blot; LDH release, SOD, and GSH-PX activities in each group were detected by kit.In the H/R group, the expression level of miR-26a-5p was significantly decreased, whereas the expression level of WNT5A was significantly increased. The activity of the Wnt/β-catenin signaling pathway was up-regulated; the level of LDH released was significantly increased; and activities of SOD and GSH-PX were significantly decreased. The aforementioned changes resulted in decreased cell activity and increased apoptosis rate. The overexpression of miR-26a-5p could reduce the expression level of WNT5A, the activity of the Wnt/β-catenin signaling pathway, and the apoptosis rate and restore the cell viability.These results suggest that miR-26a-5p can target WNT5A and thus, inhibit the Wnt/β-catenin signaling pathway activity, inhibiting H/R-induced cardiomyocyte injury and apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1536/ihj.21-054DOI Listing

Publication Analysis

Top Keywords

wnt/β-catenin signaling
20
signaling pathway
16
apoptosis rate
12
group detected
12
expression level
12
mir-26a-5p
10
cardiomyocyte injury
8
cells transfected
8
transfected mir-26a-5p
8
mir-26a-5p wnt5a
8

Similar Publications

Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.

Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.

View Article and Find Full Text PDF

Refining breast cancer genetic risk and biology through multi-ancestry fine-mapping analyses of 192 risk regions.

Nat Genet

January 2025

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.

Genome-wide association studies have identified approximately 200 genetic risk loci for breast cancer, but the causal variants and target genes are mostly unknown. We sought to fine-map all known breast cancer risk loci using genome-wide association study data from 172,737 female breast cancer cases and 242,009 controls of African, Asian and European ancestry. We identified 332 independent association signals for breast cancer risk, including 131 signals not reported previously, and for 50 of them, we narrowed the credible causal variants down to a single variant.

View Article and Find Full Text PDF

WNT/β-catenin signaling plays key roles in development and cancer. ZNRF3/RNF43 modulates Frizzleds through ubiquitination, dampening WNT/β-catenin signaling. Conversely, RSPO1-4 binding to LGR4-6 and ZNRF3/RNF43 enhances WNT/β-catenin signaling.

View Article and Find Full Text PDF

Objective: Hirudin has shown potential in promoting angiogenesis and providing neuroprotection in ischemic stroke; however, its therapeutic role in promoting cerebrovascular angiogenesis remains unclear. In this study, we aimed to investigate whether hirudin exerts neuroprotective effects by promoting angiogenesis through the regulation of the Wnt/β-catenin signaling pathway.

Methods: An in vitro model of glucose and oxygen deprivation/reperfusion (OGD/R) was established using rat brain microvascular endothelial cells (BMECs).

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) has a complex etiology where insults in multiple pathways conspire to disrupt neuronal function, yet molecular changes underlying AD remain poorly understood. Previously, we performed mass-spectrometry on post-mortem human brain tissue to identify >40 protein co-expression modules correlated to AD pathological and clinical traits. Module 42 has the strongest correlation to AD pathology and consists of 32 proteins including SMOC1, a predicted driver of network behavior and potential biomarker for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!