Orthogonal genome-wide screens of bat cells identify MTHFD1 as a target of broad antiviral therapy.

Proc Natl Acad Sci U S A

MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, 100084 Beijing, China;

Published: September 2021

Bats are responsible for the zoonotic transmission of several major viral diseases, including those leading to the 2003 SARS outbreak and likely the ongoing COVID-19 pandemic. While comparative genomics studies have revealed characteristic adaptations of the bat innate immune system, functional genomic studies are urgently needed to provide a foundation for the molecular dissection of the viral tolerance in bats. Here we report the establishment of genome-wide RNA interference (RNAi) and CRISPR libraries for the screening of the model megabat, We used the complementary RNAi and CRISPR libraries to interrogate cells for infection with two different viruses: mumps virus and influenza A virus, respectively. Independent screening results converged on the endocytosis pathway and the protein secretory pathway as required for both viral infections. Additionally, we revealed a general dependence of the C1-tetrahydrofolate synthase gene, MTHFD1, for viral replication in bat cells and human cells. The MTHFD1 inhibitor, carolacton, potently blocked replication of several RNA viruses, including SARS-CoV-2. We also discovered that bats have lower expression levels of MTHFD1 than humans. Our studies provide a resource for systematic inquiry into the genetic underpinnings of bat biology and a potential target for developing broad-spectrum antiviral therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488669PMC
http://dx.doi.org/10.1073/pnas.2104759118DOI Listing

Publication Analysis

Top Keywords

bat cells
8
antiviral therapy
8
rnai crispr
8
crispr libraries
8
orthogonal genome-wide
4
genome-wide screens
4
bat
4
screens bat
4
cells
4
cells identify
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!