Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chlorine-based compounds are typical persistent organic pollutants (POPs) that are widely generated in industrial production. This paper reports an effective and rapid pulsed laser irradiation technique for the dechlorination of hexachlorobenzene (HCB), a model pollutant, without additional catalysts or supports. The effects of the laser parameters, including the laser wavelength and power, on the dechlorination efficiency, were also investigated. The optimized results showed that a lower laser wavelength of 266 nm with 10 mJ/pulse power exhibited the highest dechlorination efficiency with 95% within 15 min. In addition, the laser beam effect was examined by designing the direct-pulsed laser single and multipath irradiation system. The results showed that improving the laser beam profile resulted in more than 95% dechlorination efficiency within 5 min. Thus, the dechlorination reaction proceeded much faster as the surface area that the laser beam came in contact with increased due to the multipath system than the single pathway. Gas chromatography identified benzene as the final product of HCB with pentachlorobenzene (PCB), tetrachlorobenzene (TeCB), trichlorobenzene (TCB), dichlorobenzene (DCB), and chlorobenzene (CB) as intermediate products. The mechanism of HCB dechlorination was explained by a comparison of theoretical calculations with the experimental results. The present study reports an advanced technique for the complete dechlorination of chlorobenzenes, which holds great application potential in environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.118158 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!