Objective: Drug resistance is the main obstacle in the treatment of non-small cell lung cancer (NSCLC). This study aimed to explore the mechanism of DICER in NSCLC resistance and its downstream signaling pathways.
Methods: The A549 cisplatin (DDP)-resistant strain A549/DDP was established. A549/DDP cells were transfected with DICER- and let-7i-5p-related vectors, and treated with autophagy activator rapamycin. The cell viability and apoptosis were tested by CCK-8 assay and flow cytometry, respectively. The formation of autophagosomes was observed with a transmission electron microscopy. RT-qPCR and Western blot assay were conducted to detect expression levels of DICER, let-7i-5p, autophagy-related proteins, and the PI3K/AKT/mTOR pathway-related proteins. The dual luciferase reporter gene assay was implemented to confirm the targeted binding of DICER and let-7i-5p.
Results: DICER was highly expressed in DDP-resistant NSCLC tissues and cells, and DICER could target and negatively regulate the expression of let-7i-5p. DDP treatment could inhibit the viability and promote cell apoptosis of A549/DDP cells. Downregulation of DICER in A549/DDP cells exhibited a decrease of cell viability, a decreased ratio of LC3-II/LC3-I and autophagosomes, together with an elevation of cell apoptosis rate and the phosphorylation levels of PI3K/AKT/mTOR. Treatment of rapamycin and let-7i-5p inhibitor reversed the effects of downregulated DICER in cell viability, ratio of LC3-II/LC3-I, autophagosomes, cell apoptosis rate and the phosphorylation levels of PI3K/AKT/mTOR in A549/DDP cells.
Conclusion: Our research suggests that DICER promotes autophagy and DDP resistance in NSCLC through downregulating let-7i-5p, and inhibits the activation of PI3K/AKT/mTOR pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acthis.2021.151788 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!