Super-resolution (SR) MR image reconstruction has shown to be a very promising direction to improve the spatial resolution of low-resolution (LR) MR images. In this paper, we presented a novel MR image SR method based on a dense convolutional neural network (DDSR), and its enhanced version called EDDSR. There are three major innovations: first, we re-designed dense modules to extract hierarchical features directly from LR images and propagate the extracted feature maps through dense connections. Therefore, unlike other CNN-based SR MR techniques that upsample LR patches in the initial phase, our methods take the original LR images or patches as input. This effectively reduces computational complexity and speeds up SR reconstruction. Second, a final deconvolution filter in our model automatically learns filters to fuse and upscale all hierarchical feature maps to generate HR MR images. Using this, EDDSR can perform SR reconstructions at different upscale factors using a single model with one stride fixed deconvolution operation. Third, to further improve SR reconstruction accuracy, we exploited a geometric self-ensemble strategy. Experimental results on three benchmark datasets demonstrate that our methods, DDSR and EDDSR, achieved superior performance compared to state-of-the-art MR image SR methods with less computational load and memory usage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2021.101973 | DOI Listing |
Sensors (Basel)
December 2024
School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
Human pose estimation is an important research direction in the field of computer vision, which aims to accurately identify the position and posture of keypoints of the human body through images or videos. However, multi-person pose estimation yields false detection or missed detection in dense crowds, and it is still difficult to detect small targets. In this paper, we propose a Mamba-based human pose estimation.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.
Background: Cardiac magnetic resonance imaging (MRI) plays a crucial role in monitoring disease progression and evaluating the effectiveness of treatment interventions. Cardiac MRI allows medical practitioners to assess cardiac function accurately by providing comprehensive and quantitative information about the structure and function, hence making it an indispensable tool for monitoring the disease and treatment response. Deep learning-based segmentation enables the precise delineation of cardiac structures including the myocardium, right ventricle, and left ventricle.
View Article and Find Full Text PDFSci Total Environ
January 2025
Interdisciplinary Lab for Mathematical Ecology and Epidemiology & Department of Mathematical and Statistical Sciences, University of Alberta, Canada. Electronic address:
Prompt and accurate monitoring of cyanobacterial blooms is essential for public health management and understanding aquatic ecosystem dynamics. Remote sensing, in particular satellite observations, presents a good alternative for continuous monitoring. This study employs multispectral images from the Sentinel-2 constellation alongside ERA5-Land to enable broad-scale data acquisition.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
School of Computer Science, Hubei University of Technology, Wuhan, China.
Reactive lymphocytes are an important type of leukocytes, which are morphologically transformed from lymphocytes. The increase in these cells is usually a sign of certain virus infections, so their detection plays an important role in the fight against diseases. Manual detection of reactive lymphocytes is undoubtedly time-consuming and labor-intensive, requiring a high level of professional knowledge.
View Article and Find Full Text PDFPhotoacoustics
February 2025
Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evaluations across varied datasets and architectures are lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!