3D dense convolutional neural network for fast and accurate single MR image super-resolution.

Comput Med Imaging Graph

College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China; Medical Data Science Academy, Chongqing Medical University, Chongqing 400016, China. Electronic address:

Published: October 2021

Super-resolution (SR) MR image reconstruction has shown to be a very promising direction to improve the spatial resolution of low-resolution (LR) MR images. In this paper, we presented a novel MR image SR method based on a dense convolutional neural network (DDSR), and its enhanced version called EDDSR. There are three major innovations: first, we re-designed dense modules to extract hierarchical features directly from LR images and propagate the extracted feature maps through dense connections. Therefore, unlike other CNN-based SR MR techniques that upsample LR patches in the initial phase, our methods take the original LR images or patches as input. This effectively reduces computational complexity and speeds up SR reconstruction. Second, a final deconvolution filter in our model automatically learns filters to fuse and upscale all hierarchical feature maps to generate HR MR images. Using this, EDDSR can perform SR reconstructions at different upscale factors using a single model with one stride fixed deconvolution operation. Third, to further improve SR reconstruction accuracy, we exploited a geometric self-ensemble strategy. Experimental results on three benchmark datasets demonstrate that our methods, DDSR and EDDSR, achieved superior performance compared to state-of-the-art MR image SR methods with less computational load and memory usage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2021.101973DOI Listing

Publication Analysis

Top Keywords

dense convolutional
8
convolutional neural
8
neural network
8
feature maps
8
dense
4
network fast
4
fast accurate
4
accurate single
4
image
4
single image
4

Similar Publications

Human pose estimation is an important research direction in the field of computer vision, which aims to accurately identify the position and posture of keypoints of the human body through images or videos. However, multi-person pose estimation yields false detection or missed detection in dense crowds, and it is still difficult to detect small targets. In this paper, we propose a Mamba-based human pose estimation.

View Article and Find Full Text PDF

DeSPPNet: A Multiscale Deep Learning Model for Cardiac Segmentation.

Diagnostics (Basel)

December 2024

Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.

Background: Cardiac magnetic resonance imaging (MRI) plays a crucial role in monitoring disease progression and evaluating the effectiveness of treatment interventions. Cardiac MRI allows medical practitioners to assess cardiac function accurately by providing comprehensive and quantitative information about the structure and function, hence making it an indispensable tool for monitoring the disease and treatment response. Deep learning-based segmentation enables the precise delineation of cardiac structures including the myocardium, right ventricle, and left ventricle.

View Article and Find Full Text PDF

Cyanobacteria hot spot detection integrating remote sensing data with convolutional and Kolmogorov-Arnold networks.

Sci Total Environ

January 2025

Interdisciplinary Lab for Mathematical Ecology and Epidemiology & Department of Mathematical and Statistical Sciences, University of Alberta, Canada. Electronic address:

Prompt and accurate monitoring of cyanobacterial blooms is essential for public health management and understanding aquatic ecosystem dynamics. Remote sensing, in particular satellite observations, presents a good alternative for continuous monitoring. This study employs multispectral images from the Sentinel-2 constellation alongside ERA5-Land to enable broad-scale data acquisition.

View Article and Find Full Text PDF

Reactive lymphocytes are an important type of leukocytes, which are morphologically transformed from lymphocytes. The increase in these cells is usually a sign of certain virus infections, so their detection plays an important role in the fight against diseases. Manual detection of reactive lymphocytes is undoubtedly time-consuming and labor-intensive, requiring a high level of professional knowledge.

View Article and Find Full Text PDF

Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evaluations across varied datasets and architectures are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!