A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Brg1 mutation alters oxidative stress responses in glioblastoma. | LitMetric

Brg1 mutation alters oxidative stress responses in glioblastoma.

Neurochem Int

National Brain Research Centre, Manesar, Haryana, 122 052, India. Electronic address:

Published: November 2021

Increasing evidences suggest that the SWI/SNF chromatin remodeling complex involved in the organization of chromatin architecture via ATP hydrolysis, plays an important role in human cancer. As TCGA gene expression analyses revealed signature of enhanced oxidative stress in GBMs harbouring Brg1mutations, we examined the involvement of ATPase subunit of BRG1 in regulating oxidative stress responses in glioma. BRG1-MUT overexpressing glioma cells exhibit intrinsically higher reactive oxygen species (ROS) levels as compared to BRG1-WT. Elevated ROS generation was concomitant with decreased expression of NF-E2- related factor 2 (NRF2), superoxide dismutases (SOD-1,2) and thioredoxins (TrX-1,2). A similar change in redox regulatory genes and ROS production was observed upon siRNA-mediated knockdown of Brg1. Increased sensitivity to temozolomide was observed upon loss of BRG1-ATPase catalytic domain. These findings highlight the role of ATPase domain of BRG1 in regulating redox homeostasis and sensitivity to oxidative stressors in glioma cells. BRG1 mutation created vulnerability to elevated ROS levels can be therapeutically exploited, with ROS stressors as a promising therapeutic target for the treatment of BRG1-mutant cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2021.105189DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
brg1 mutation
8
stress responses
8
brg1 regulating
8
glioma cells
8
ros levels
8
elevated ros
8
brg1
5
ros
5
mutation alters
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!