Exposure of silver nanocolloids causes glycosylation disorders and embryonic deformities in medaka.

Toxicol Appl Pharmacol

Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Research Center for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Department of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan. Electronic address:

Published: November 2021

Silver nanomaterials such as silver nanocolloids (SNC) contribute to environmental pollution and have adverse ecological effects on aquatic organisms. In particular, chemical exposure of fish during embryogenesis leads to deformities and puts the population at risk. Although glycans and glycosylation are known to be important for proper morphology in embryogenesis, little glycobiology-based research has examined morphological disorders caused by environmental pollutants. This study addressed the glycobiological effects of SNC exposure on medaka embryogenesis. After exposure of medaka embryos to SNC, deformities such as small heads and deformed eyes were observed. The expression of five glycan-related genes (alg2, gnsb, b4galt2, b3gat1a, and b3gat2) was significantly altered, with changes depending on the embryonic stage at exposure, with more severe deformities with exposure at earlier stages. In situ hybridization analyses indicated that the five genes were expressed mainly in the head region; exposure of SNC suppressed alg2 and gnsb and enhanced b4galt2 and b3gat1a expression relative to controls on day 7. Loss (siRNA)- and gain (RNA overexpression)-of-function experiments confirmed that alg2, gnsb, and b4galt2 are essential for embryogenesis. The effects of SNC exposure on glycan synthesis were estimated by glycan structure analysis. In the medaka embryo, high mannose-type glycans were dominant, and SNC exposure altered glycan synthesis. The alteration was more significant when exposure occurred at an early stage of medaka embryogenesis. Thus, SNC exposure causes embryonic deformities in medaka embryos through disordered glycosylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2021.115714DOI Listing

Publication Analysis

Top Keywords

snc exposure
16
alg2 gnsb
12
exposure
11
silver nanocolloids
8
embryonic deformities
8
deformities medaka
8
effects snc
8
exposure medaka
8
medaka embryogenesis
8
medaka embryos
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!