Granulocyte colony-stimulating factor (G-CSF) is produced at high levels in several cancers and is directly linked with metastasis in gastrointestinal (GI) cancers. In order to further understand the alteration of molecular compositions and biochemical features triggered by G-CSF treatment at molecular and cell levels, we sought to investigate the long term treatment of G-CSF on colon and breast cancer cells measured by label-free, non-invasive single-cell Raman microspectroscopy. Raman spectrum captures the molecule-specific spectral signatures ("fingerprints") of different biomolecules presented on cells. In this work, mouse breast cancer line 4T1 and mouse colon cancer line CT26 were treated with G-CSF for 7 weeks and subsequently analyzed by machine learning based Raman spectroscopy and gene/cytokine expression. The principal component analysis (PCA) identified the Raman bands that most significantly changed between the control and G-CSF treated cells. Notably, here we proposed the concept of aggressiveness score, which can be derived from the posterior probability of linear discriminant analysis (LDA), for quantitative spectral analysis of tumorigenic cells. The aggressiveness score was effectively applied to analyze and differentiate the overall cell biochemical changes of G-CSF-treated two model cancer cells. All these tumorigenic progressions suggested by Raman analysis were confirmed by pro-tumorigenic cytokine and gene analysis. A high correlation between gene expression data and Raman spectra highlights that the machine learning based non-invasive Raman spectroscopy offers emerging and powerful tools to better understand the regulation mechanism of cytokines in the tumor microenvironment that could lead to the discovery of new targets for cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631005 | PMC |
http://dx.doi.org/10.1039/d1an00938a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!