Androgen receptor transactivates KSHV noncoding RNA PAN to promote lytic replication-mediated oncogenesis: A mechanism of sex disparity in KS.

PLoS Pathog

Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China.

Published: September 2021

Kaposi's sarcoma-associated herpesvirus (KSHV) preferentially infects and causes Kaposi's sarcoma (KS) in male patients. However, the biological mechanisms are largely unknown. This study was novel in confirming the extensive nuclear distribution of the androgen receptor (AR) and its co-localization with viral oncoprotein of latency-associated nuclear antigen in KS lesions, indicating a transcription way of AR in KS pathogenesis. The endogenous AR was also remarkably higher in KSHV-positive B cells than in KSHV-negative cells and responded to the ligand treatment of 5α-dihydrotestosterone (DHT), the agonist of AR. Then, the anti-AR antibody-based chromatin immunoprecipitation (ChIP)-associated sequencing was used to identify the target viral genes of AR, revealing that the AR bound to multiple regions of lytic genes in the KSHV genome. The highest peak was enriched in the core promoter sequence of polyadenylated nuclear RNA (PAN), and the physical interaction was verified by ChIP-polymerase chain reaction (PCR) and the electrophoretic mobility shift assay (EMSA). Consistently, male steroid treatment significantly transactivated the promoter activity of PAN in luciferase reporter assay, consequently leading to extensive lytic gene expression and KSHV production as determined by real-time quantitative PCR, and the deletion of nuclear localization signals of AR resulted in the loss of nuclear transport and transcriptional activity in the presence of androgen and thus impaired the expression of PAN RNA. Oncogenically, this study identified that the AR was a functional prerequisite for cell invasion, especially under the context of KSHV reactivation, through hijacking the PAN as a critical effector. Taken together, a novel mechanism from male sex steroids to viral noncoding RNA was identified, which might provide a clue to understanding the male propensity in KS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483343PMC
http://dx.doi.org/10.1371/journal.ppat.1009947DOI Listing

Publication Analysis

Top Keywords

androgen receptor
8
noncoding rna
8
rna pan
8
kshv
5
pan
5
nuclear
5
receptor transactivates
4
transactivates kshv
4
kshv noncoding
4
rna
4

Similar Publications

Minimal study focused on the association between mixed pollutants in atmospheric particulate matter (PM) and their reproductive health risks. Utilizing a novel quantitative structure-activity relationship (QSAR) integrated machine learning algorithms, we evaluated the mixed reproductive health risks associated with phthalates (PAEs) and organophosphates (OPEs) exposure by assessing the affinities of these compounds binding to estrogen receptors (ER) and androgen receptors (AR). The mixed toxicity equivalent factor (TEF) and mixed toxicity equivalent quantity (TEQ) by the QSAR model were all smaller than the sum TEF and TEQ of individual PAEs and OPEs, which may be due to the antagonistic effect of PAEs and OPEs monomers on reproductive toxicity.

View Article and Find Full Text PDF

Among the known nuclear exportins, CRM1 is the most studied prototype. Dysregulation of CRM1 occurs in many cancers, hence, understanding the role of CRM1 in cancer can help in developing synergistic therapeutics. The study investigates how CRM1 affects prostate cancer growth and survival.

View Article and Find Full Text PDF

Gene fusions involving JAZF1 are a recurrent event in low grade endometrial stromal sarcoma, and have been more recently described in few instances of endometrial stromal sarcoma-like tumors in the genitourinary tract of men. In this article, we describe a previously unreported spindle cell sarcoma harboring an in-frame JAZF1::NUDT5 gene fusion, arising in the chest wall of a 51-year-old man. The tumor had unique morphologic features resembling both endometrial stromal sarcoma and endometrial stromal sarcoma-like tumors, consisting of a mixture of cytologically bland and pleomorphic spindle cells with brisk mitotic activity, within an alternating myxoid and fibrous stroma.

View Article and Find Full Text PDF

Lactoferrin conjugated radicicol nanoparticles enhanced drug delivery and cytotoxicity in prostate cancer cells.

Eur J Pharmacol

January 2025

School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia. Electronic address:

Pyruvate dehydrogenase kinase-1 (PDK1) plays a crucial role in cancer cell metabolism by regulating the glycolytic pathway. Although, inhibitors targeting PDK1 have been effective in inhibiting glycolysis in multiple cancers, their lack of selectivity leading to off-target effects limit their therapeutic benefit. Herein, we investigated the inhibitory potential of six PDK1 inhibitors on cellular proliferation, migration, and invasion of androgen-sensitive LNCaP and androgen-negative PC-3 prostate cancer cells.

View Article and Find Full Text PDF

Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!