Although deep networks have been shown to perform very well on a variety of medical imaging tasks, inference in the presence of pathology presents several challenges to common models. These challenges impede the integration of deep learning models into real clinical workflows, where the customary process of cascading deterministic outputs from a sequence of image-based inference steps (e.g. registration, segmentation) generally leads to an accumulation of errors that impacts the accuracy of downstream inference tasks. In this paper, we propose that by embedding uncertainty estimates across cascaded inference tasks, performance on the downstream inference tasks should be improved. We demonstrate the effectiveness of the proposed approach in three different clinical contexts: (i) We demonstrate that by propagating T2 weighted lesion segmentation results and their associated uncertainties, subsequent T2 lesion detection performance is improved when evaluated on a proprietary large-scale, multi-site, clinical trial dataset acquired from patients with Multiple Sclerosis. (ii) We show an improvement in brain tumour segmentation performance when the uncertainty map associated with a synthesised missing MR volume is provided as an additional input to a follow-up brain tumour segmentation network, when evaluated on the publicly available BraTS-2018 dataset. (iii) We show that by propagating uncertainties from a voxel-level hippocampus segmentation task, the subsequent regression of the Alzheimer's disease clinical score is improved.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2021.3114097DOI Listing

Publication Analysis

Top Keywords

inference tasks
12
medical imaging
8
imaging tasks
8
tasks improved
8
deep learning
8
downstream inference
8
brain tumour
8
tumour segmentation
8
inference
6
tasks
5

Similar Publications

Foundation models for computational pathology have shown great promise for specimen-level tasks and are increasingly accessible to researchers. However, specimen-level models built on these foundation models remain largely unavailable, hindering their broader utility and impact. To address this gap, we developed SpinPath, a toolkit designed to democratize specimen-level deep learning by providing a zoo of pretrained specimen-level models, a Python-based inference engine, and a JavaScript-based inference platform.

View Article and Find Full Text PDF

A nutritious diet is crucial for good health and cognitive function, including working memory (WM). Nutrients like omega-3 fatty acids, antioxidants, and vitamins found in whole foods have been linked to improved WM. Examining the impact of dietary habits on WM in women, who face hormonal and health-related challenges, is important.

View Article and Find Full Text PDF

Sparse Convolution FPGA Accelerator Based on Multi-Bank Hash Selection.

Micromachines (Basel)

December 2024

Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China.

Reconfigurable processor-based acceleration of deep convolutional neural network (DCNN) algorithms has emerged as a widely adopted technique, with particular attention on sparse neural network acceleration as an active research area. However, many computing devices that claim high computational power still struggle to execute neural network algorithms with optimal efficiency, low latency, and minimal power consumption. Consequently, there remains significant potential for further exploration into improving the efficiency, latency, and power consumption of neural network accelerators across diverse computational scenarios.

View Article and Find Full Text PDF

Tilted-Mode All-Optical Diffractive Deep Neural Networks.

Micromachines (Basel)

December 2024

Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China.

Diffractive deep neural networks (DNNs) typically adopt a densely cascaded arrangement of diffractive masks, leading to multiple reflections of diffracted light between adjacent masks, thereby affecting the network's inference capability. It is challenging to fully simulate this multiple-reflection phenomenon. To eliminate this phenomenon, we designed tilted-mode all-optical diffractive deep neural networks (T-DNNs) and proposed a theoretical model for diffraction propagation in the tilted mode.

View Article and Find Full Text PDF

Supporting vision-language model few-shot inference with confounder-pruned knowledge prompt.

Neural Netw

January 2025

National Key Laboratory of Space Integrated Information System, Institute of Software Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.

Vision-language models are pre-trained by aligning image-text pairs in a common space to deal with open-set visual concepts. Recent works adopt fixed or learnable prompts, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!